eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics

eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析

基本信息

  • 批准号:
    2325195
  • 负责人:
  • 金额:
    $ 11.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Migratory animals including many bird species travel a spectacular distance annually between their summer breeding ground and overwintering site to track the appearance of key resources and maximize reproductive success. However, these migratory cycles are potentially disrupted as the timing of these resources are impacted by global climate change. To address the above knowledge gap, the interdisciplinary team of principle investigators (PIs) comprising a mathematician, biologist, and data scientists will develop novel mathematical models such as stochastic dynamic programming and agent-based models to gain mechanistic understanding of how migratory animals determine their routes and timing in response to environmental cues, and how those can be affected by climate change. The project will promote the use of the eBird database, which is a grassroots effort enabling citizens to directly contribute bird observations data using a mobile app. The project is a collaboration between Ohio State University and Oklahoma State University and offers valuable educational, training, and outreach opportunities. In addition to training of PhD students, the PIs propose to establish a K-12 program with a daylong workshop to engage the public and raise awareness of bird conservational efforts and impacts of climate change, as well as a summer undergraduate research program targeting underrepresented groups (ROMUS program at Ohio State). At the professional level, the PIs will organize synergistic activities to facilitate exchanges between mathematicians and biologists. These include a confirmed week-long workshop at Banff International Research Station in October 2024, for over 100 virtual and in-person participants. This research will improve our understanding of the effects of climate change on migrating bird populations and inform future conservation and management of wildlife. A critical question for understanding ecological responses to global change and conserving biodiversity in a changing world, is whether migrating animals can adjust their migration routes and schedules to track key resources even as the phenology of these resources shifts with climate change. In the case of birds with seasonal migratory routes crossing hemispheres, past studies have detected asynchrony between spring vegetation green-up and their arrival at breeding areas. This raised the concern that migrating birds may be negatively impacted by climate change. This interdisciplinary team of mathematician, biologist and data scientists will address the above knowledge gap by developing stochastic dynamic programming (SDP) models and agent-based models (ABM) for migrating animal populations. First, the aim is to develop an SDP model with switching costs in a continuous-time framework, in the context of optimal migration problem. The PIs will formulate and analyze the resulting Bellman equations and address the theoretical challenge of connecting individual migration decision to emergent population patterning. In addition, the PIs will also use spatially explicit agent-based modeling in parallel with and to extend the proposed mathematical modeling. Finally, the PIS will leverage remote sensing data on spring green-up across the Western Hemisphere with population level migration data for bird species from eBird database, for parameter estimation and model result comparison.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包括许多鸟类在内的迁徙动物每年在夏季繁殖地和越冬地之间旅行一段壮观的距离,以跟踪关键资源的出现并最大限度地提高繁殖成功率。然而,由于这些资源的时间受到全球气候变化的影响,这些迁徙周期可能会被打乱。为了解决上述知识差距,由数学家、生物学家和数据科学家组成的跨学科研究团队将开发新的数学模型,如随机动态规划和基于代理的模型,以获得对迁徙动物如何根据环境线索确定路线和时间的机械理解,以及这些如何受到气候变化的影响。该项目将促进eBird数据库的使用,这是一项基层工作,使公民能够使用移动的应用程序直接贡献鸟类观测数据。该项目是俄亥俄州州立大学和俄克拉荷马州州立大学之间的合作,提供了宝贵的教育,培训和推广机会。 除了博士生的培训,PI建议建立一个K-12计划,为期一天的研讨会,以吸引公众参与,提高对鸟类保护工作和气候变化影响的认识,以及针对代表性不足的群体的夏季本科生研究计划(俄亥俄州的ROMUS计划)。在专业层面,研究所将举办协同活动,促进数学家和生物学家之间的交流。其中包括2024年10月在班夫国际研究站举行的为期一周的研讨会,有100多名虚拟和面对面的参与者。这项研究将提高我们对气候变化对候鸟种群影响的理解,并为未来的野生动物保护和管理提供信息。了解生态对全球变化的反应和在不断变化的世界中保护生物多样性的一个关键问题是,即使这些资源的物候随着气候变化而变化,迁徙动物是否可以调整它们的迁徙路线和时间表来跟踪关键资源。在鸟类的季节性迁徙路线跨越半球的情况下,过去的研究已经发现了春季植被变绿和它们到达繁殖区之间的时间间隔。这引起了人们对候鸟可能受到气候变化负面影响的关注。这个由数学家、生物学家和数据科学家组成的跨学科团队将通过开发用于迁移动物种群的随机动态规划(SDP)模型和基于代理的模型(ABM)来解决上述知识差距。首先,我们的目标是开发一个SDP模型的切换成本在连续时间框架内,在最优迁移问题的背景下。PI将制定和分析由此产生的贝尔曼方程,并解决连接个人迁移决策的理论挑战,以新兴的人口模式。此外,PI还将使用空间显式的基于代理的建模并行,并扩展拟议的数学建模。最后,PIS将利用整个西半球春季绿化的遥感数据和eBird数据库中鸟类种群水平迁移数据,进行参数估计和模型结果比较。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

King Yeung Lam其他文献

Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures
一类具有网络结构的疾病传播模型的行波
  • DOI:
    10.1137/17m1144258
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    2
  • 作者:
    King Yeung Lam;Xueying Wang;Tianran Zhang
  • 通讯作者:
    Tianran Zhang

King Yeung Lam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('King Yeung Lam', 18)}}的其他基金

Dynamics of Phytoplankton in Water Columns: Persistence, Competition, and Evolution
水柱中浮游植物的动态:持久性、竞争和进化
  • 批准号:
    1853561
  • 财政年份:
    2019
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Continuing Grant

相似海外基金

eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325172
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
  • 批准号:
    2325259
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325171
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
  • 批准号:
    2325258
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325078
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325076
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Advancing Inference of Phylogenetic Trees and Networks under Multispecies Coalescent with Hybridization and Gene Flow
eMB:合作研究:通过杂交和基因流推进多物种合并下的系统发育树和网络的推理
  • 批准号:
    2325776
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325077
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
  • 批准号:
    2324691
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了