Integrated Multiphase Blood Flow Modeling and Experiments Towards Predicting Microvascular Growth

集成多相血流建模和实验来预测微血管生长

基本信息

  • 批准号:
    2309559
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This award aims to advance current understanding of how new blood vessels grow in the body. Such growth is central to many processes in health and disease, from embryonic development and natural changes and repairs as the body ages, to diabetes, heart disease, and tumor growth in cancer. Despite the importance, little is currently known about the three-dimensional biophysical mechanisms driving new vessel growth in real environments. To address this need, this project will develop new data-driven models within an in-house state-of-the-art simulation platform, integrating high-fidelity biophysical simulation with high-resolution imaging of real blood vessel networks undergoing growth and adaptation. Analyses will be performed to elucidate characteristics of the fluid dynamics and biophysics underlying this growth behavior at a new level of detail, towards enabling predictive models. This project will provide the research community with new data-driven models and studies which integrate concepts across disciplines, and provide opportunities to engage the local community, and foster mentorship and education of students at various levels.The growth of new blood vessels off existing vessels, or angiogenesis, occurs in the microcirculation where vessel diameters are similar in size to the individual red blood cells which comprise blood. While it is known that fluid dynamics and shear stresses drive vascular function, current understanding of angiogenic hemodynamics is based on reduced-order approaches which neglect essential three-dimensional cell-scale details of blood flow. Angiogenic vessel networks and new vessel sprouts have uniquely complex three-dimensional geometries through which red blood cells flow and squeeze. Wall shear stress patterns due to these considerations are largely unknown, along with other tissue-side factors and coupled interactions expected to influence angiogenic behavior. The goals of this project include discovering shear stress patterns which emerge in real angiogenic vessel networks through high-fidelity red blood cell-resolved fluid simulations, elucidating the fluid mechanics within new vessel sprouts and connections to growth patterns, and developing a new three-dimensional dynamic multiphysics sprout model which couples porous media tissue transport with microvascular hemodynamics to enable vessel growth through tissue. Potential contributions resulting from this work include helping to predict tumor growth patterns and guiding new treatment approaches, or enabling earlier identification of problems during embryonic development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项旨在提高人们对新血管如何在体内生长的了解。这种增长对于健康和疾病的许多过程至关重要,从胚胎发育,自然变化和维修作为身体年龄到癌症,心脏病和癌症的肿瘤生长。尽管很重要,但目前对在实际环境中推动新容器生长的三维生物物理机制知之甚少。为了满足这一需求,该项目将在内部最新的模拟平台内开发新的数据驱动模型,将高保真生物物理模拟与经过生长和适应的真实血管网络的高分辨率成像相结合。将进行分析,以阐明这种生长行为在新的细节层面,以促进预测模型的特征。该项目将为研究社区提供新的数据驱动模型和研究,这些模型和研究将跨学科的概念整合在一起,并提供机会吸引当地社区,并在各个层面上培养学生的指导和教育。在现有血管或血管生成的新血管的增长,或血管生成,在微循环中发生在小血管直径的情况下,与组成的红细胞相似,该血管的大小相似。虽然众所周知,流体动力学和剪切应力会促进血管功能,但目前对血管生成血流动力学的理解是基于降低的方法,这些方法忽略了必需的三维细胞尺度血液流量的细节。血管生成血管网络和新的血管芽具有独特的复杂三维几何形状,红细胞流动和挤压。由于这些考虑而引起的壁剪切应力模式在很大程度上是未知的,以及其他组织侧因子和预期会影响血管生成行为的耦合相互作用。该项目的目标包括发现剪切应力模式,这些模式通过高保真性血细胞分辨的流体模拟在实际的血管生成血管网络中出现,阐明了新的血管芽中的流体力学以及与生长模式的连接,并与生长模式的连接,并与新的三维动态多个物理学开发,从而通过媒体群体进行孔隙式移植,从而促进三维动态动态学。这项工作产生的潜在贡献包括帮助预测肿瘤的生长模式和指导新的治疗方法,或在胚胎开发过程中早期识别问题。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Balogh其他文献

RUNX3 is required for megakaryocyte-erythroid specification in primary human progenitors
  • DOI:
    10.1016/j.exphem.2017.06.328
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Balogh;Adam Goldfarb
  • 通讯作者:
    Adam Goldfarb
The role of the transcription factor Dach1 in the high endothelial venule development
转录因子Dach1在高内皮小静脉发育中的作用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haruko Hayasaka;Peter Balogh; Masayuki Miyasaka,
  • 通讯作者:
    Masayuki Miyasaka,

Peter Balogh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
  • 批准号:
    52378474
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
红土镍钴矿基储能材料制备过程多相反应耦合及分离强化机制研究
  • 批准号:
    22378244
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
毛管末端效应影响下多相抽提的NAPL运移机理与模型研究
  • 批准号:
    42307096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氧化物多相体系粘度通用模型构建研究
  • 批准号:
    22378411
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电场对固体推进剂多相燃烧的协同调控机理研究
  • 批准号:
    22375164
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Taxi ROADmAP (Realizing Optimization Around Diet And Physical activity)
出租车 ROADmAP(实现饮食和身体活动优化)
  • 批准号:
    10344795
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Taxi ROADmAP (Realizing Optimization Around Diet And Physical activity)
出租车 ROADmAP(实现饮食和身体活动优化)
  • 批准号:
    10643699
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Development of effective conservative therapy for refractory patellar tendonitis Synergistic effect of platelet-rich plasma therapy and extracorporeal shock wave therapy
难治性髌腱炎有效保守治疗的发展 富血小板血浆治疗与体外冲击波治疗的协同作用
  • 批准号:
    21K11400
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FREEDOM-HIV
自由-艾滋病毒
  • 批准号:
    10674343
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Food Delivery, Remote Monitoring, and coaching-Enhanced Education for Optimized Diabetes Management (FREEDOM)
食品配送、远程监控和辅导——优化糖尿病管理的强化教育(自由)
  • 批准号:
    10494295
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了