Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media

合作研究:多孔介质中振荡流和多相传热的多尺度研究

基本信息

  • 批准号:
    2414527
  • 负责人:
  • 金额:
    $ 13.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In our evolving energy landscape, it is crucial to maximize the efficiency of energy technologies and understand the impact of fossil fuel extraction and carbon storage. Technologies that are central to this - subsurface remediation, geothermal energy systems, batteries, fracking, etc. - are governed by complicated flow through porous media, which is not currently well understood. A porous medium has multiple, convoluted pathways of various sizes for fluid flow through an otherwise solid material. The flows can be single phase (liquid/gas) or multiphase, and can occur at constant temperature or with heat transfer. The flow can occur in a single direction, or oscillate. When all of these are combined, nonlinear effects can result, which could improve the behavior of a system or negatively impact performance, depending on how the effects are propagated and understood. The major objective of this work is to experimentally study oscillating and multiphase flows in porous media, and then develop a numerical approach that can be used to gain further insight into the fundamental behavior, thereby improving energy efficiency, and lowering both economic costs and environmental impacts. Although porous media flow sounds esoteric, it occurs in many daily applications (brewing coffee, etc.). Therefore, this project is well suited for pre-college outreach, and several topics related to it will be used to engage underrepresented students from K-12 classrooms. In addition, this project will promote STEM education via an inter-college educational collaboration for undergraduate design projects, and demonstration units about porous media flows will be created for pre-college classrooms.This research will combine experimental and numerical techniques to describe the effects of the physical porous structure, the flow/heat transfer boundary layer (including a comparison between oscillation and non-oscillation) and the variations in wettability from materials and manufacturing process. Experimentally, naturally-occurring and engineered porous media will be scanned, analyzed, and catalogued in a database, and an experimental platform will also be designed and developed to study in situ oscillating and multiphase transport phenomena inside porous media using the Neutron Imaging Facility at Oak Ridge National Lab. This experimental work will be coupled with numerical simulations through parallel development of a multiphase discrete Boltzmann method model and a hybrid discrete/lattice Boltzmann method model to capture kinetic behaviors and multiscale interactions, in order to elucidate the fundamental behavior of oscillating multiphase thermofluidic phenomena and fluid-solid interactions. The knowledge developed in this project will, in turn, be used to improve the design of porous structures in a variety of energy applications, including thermal storage in concentrated solar power plants, carbon retention in rock structures, and fuel cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们不断发展的能源格局中,最大限度地提高能源技术的效率并了解化石燃料开采和碳储存的影响至关重要。对此至关重要的技术--地下修复、地热能系统、电池、水力压裂等--由通过多孔介质的复杂流动控制,这一点目前还没有得到很好的理解。一种多孔介质,具有多条不同大小的曲折路径,用于流体流过固体材料。流动可以是单相(液/气)或多相,可以在恒温下发生,也可以在有热传递的情况下发生。流动可以是单向的,也可以是振荡的。当所有这些结合在一起时,可能会产生非线性效应,这可能会改善系统的行为,也可能会对性能产生负面影响,这取决于这些影响是如何传播和理解的。这项工作的主要目标是通过实验研究多孔介质中的振荡和多相流动,然后开发一种数值方法,可以用来进一步了解基本行为,从而提高能源效率,并降低经济成本和环境影响。尽管多孔介质流听起来很神秘,但它出现在许多日常应用中(煮咖啡等)。因此,这个项目非常适合大学前的外展,与之相关的几个主题将被用来吸引来自K-12课堂的代表不足的学生。此外,该项目将通过本科生设计项目的大学间教育合作来促进STEM教育,并将为大学预科课堂创建关于多孔介质流动的演示单元。本研究将结合实验和数值技术来描述物理多孔结构、流动/传热边界层(包括振荡和非振荡)的影响以及材料和制造过程中润湿性的变化。在实验上,自然产生的和工程制造的多孔介质将被扫描、分析和编目到数据库中,还将设计和开发一个实验平台,利用橡树岭国家实验室的中子成像设备来研究多孔介质中的原位振荡和多相传输现象。这项实验工作将与数值模拟相结合,通过并行开发多相离散Boltzmann方法模型和离散/晶格Boltzmann方法混合模型来捕捉动力学行为和多尺度相互作用,以阐明振荡多相热流体现象和流固相互作用的基本行为。在这个项目中开发的知识将反过来用于改进各种能源应用中的多孔结构的设计,包括集中式太阳能发电厂的热储存、岩石结构中的碳保持和燃料电池。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leitao Chen其他文献

Enzymatic production of 5′-inosinic acid by AMP deaminase from a newly isolated <em>Aspergillus oryzae</em>
  • DOI:
    10.1016/j.foodchem.2016.07.171
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shubo Li;Leitao Chen;Yangjun Hu;Guohui Fang;Mouming Zhao;Yuan Guo;Zongwen Pang
  • 通讯作者:
    Zongwen Pang
Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method.
有限体积离散玻尔兹曼方法的半拉格朗日隐式 Bhatnagar-Gross-Krook 碰撞模型。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Leitao Chen;S. Succi;Xiaofeng Cai;L. Schaefer
  • 通讯作者:
    L. Schaefer
Finite volume discrete Boltzmann method on a cell-centered triangular unstructured mesh
  • DOI:
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leitao Chen
  • 通讯作者:
    Leitao Chen

Leitao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leitao Chen', 18)}}的其他基金

Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
  • 批准号:
    2200515
  • 财政年份:
    2022
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223171
  • 财政年份:
    2022
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant

相似国自然基金

非完备异构多尺度群集无人系统协同编队关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
天-空-地协同观察下的洞庭湖土壤高光谱遥感多尺度监测与反演研究
  • 批准号:
    2024JJ8353
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
水泥基力学超材料多尺度协同设计与强韧化机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
复合吸声海绵的多尺度导热胞腔构筑及声-热协同耗散机制研究
  • 批准号:
    24ZR1402500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
光子晶体光伏窗的多尺度光-热-电耦合机理 及广角度透射与光电转换协同调控研究
  • 批准号:
    Y24E060009
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高速载流铜轨表面激光熔覆钨铜合金涂层的多尺度颗粒协同 致密化原理及失效机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
水风光互补系统多尺度协同机制及智能调控方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
牡蛎低分子肽LOPs双重乳液热效应多尺度解析及离子/亲水胶体协同稳定机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于多尺度过程-格局耦合的洞庭湖流域国土空间生态系 统协同治理研究
  • 批准号:
    2024JJ8316
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多尺度异构序列特征匹配的智能车协同定位方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324580
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
  • 批准号:
    2331017
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
  • 批准号:
    2230435
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
  • 批准号:
    2316676
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了