Algorithms, Theory, and Applications for Fiber Coating Systems
光纤涂层系统的算法、理论和应用
基本信息
- 批准号:2309774
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Thin liquid films flowing down a vertical fiber, a phenomenon known as fiber coating, is a fundamental component in various engineering applications such as mass and heat exchangers for thermal desalination, water vapor, and ultra-fine particle capture. These liquid films spontaneously exhibit intriguing interfacial instabilities, leading to trains of traveling droplets and irregular wavy patterns. Although there have been extensive studies on the modeling of fiber coating dynamics, the inherent nonlinearity and degeneracy of these models often present analytical and computational challenges in broader applications. This research project aims to develop a hybrid numerical and machine learning framework that accelerates the computation and facilitates the control of large-scale stiff problems associated with fiber coating systems. The development of these techniques can lead to a prototype for real-time simulation and prediction in fiber coating applications. Parts of the project will be incorporated into the investigator’s courses on scientific computing and data science. This project will also provide research training opportunities for both undergraduate and graduate students. This project will employ analytical approaches, numerical simulations, and machine learning techniques to develop theory and algorithms for challenging free-surface flow problems that arise from fiber coating systems. Such problems are characterized by fourth-order highly-nonlinear partial differential equation (PDE) systems, which are sensitive to traditional numerical methods and data-driven machine-learning approaches. The objectives of the project are organized around three interconnected aspects: 1) Analysis of the regularity and structure of traveling droplets described by coupled PDE systems. The derived structures will be utilized to develop simplified dynamical systems from full-order models for individual droplets. A prototype control problem will be studied to establish the foundation for control design of general fiber coating systems; 2) Development of robust and structural-preserving algorithms for simulating and learning fiber coating dynamics. This involves bridging physics-based modeling principles, PDE theory, and neural ordinary differential equation techniques for long-time sequential learning and reduced-order modeling. The data-driven learning techniques developed for high-order nonlinear degenerate PDEs in this project are expected to advance scientific machine learning for stiff physical systems; 3) A real-world large-scale application will serve as a case study for the theoretical understanding and verification of the developed algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沿垂直纤维向下流动的薄液膜,一种称为纤维涂层的现象,是各种工程应用中的基本组成部分,例如用于热脱盐、水蒸气和超细颗粒捕获的质量和热交换器。这些液体膜自发地表现出有趣的界面不稳定性,导致列车的旅行液滴和不规则的波浪图案。虽然已经有广泛的研究,对光纤涂层动力学建模,这些模型的固有的非线性和简并性往往提出了更广泛的应用中的分析和计算的挑战。该研究项目旨在开发一种混合数值和机器学习框架,以加速计算并促进与光纤涂层系统相关的大规模刚性问题的控制。这些技术的发展可以导致一个原型的实时模拟和预测在光纤涂层应用。该项目的部分内容将纳入调查员的科学计算和数据科学课程。该项目还将为本科生和研究生提供研究培训机会。 该项目将采用分析方法,数值模拟和机器学习技术来开发具有挑战性的自由表面流动问题的理论和算法,这些问题来自光纤涂层系统。这类问题的特点是四阶高度非线性偏微分方程(PDE)系统,这是传统的数值方法和数据驱动的机器学习方法敏感。该项目的目标是围绕三个相互关联的方面:1)分析耦合PDE系统描述的液滴运动的规律性和结构。衍生的结构将被用来开发简化的动力系统,从全阶模型为个人液滴。将研究一个原型控制问题,为一般光纤涂覆系统的控制设计奠定基础; 2)开发鲁棒性和结构保持算法,用于模拟和学习光纤涂覆动力学。这涉及桥接基于物理的建模原理,PDE理论和神经常微分方程技术,用于长时间序列学习和降阶建模。该项目中为高阶非线性退化偏微分方程开发的数据驱动学习技术有望推进刚性物理系统的科学机器学习;(3)现实世界的大-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hangjie Ji其他文献
A nodal finite element approximation of a phase field model for shape and topology optimization
用于形状和拓扑优化的相场模型的节点有限元近似
- DOI:
10.1016/j.amc.2018.07.049 - 发表时间:
2018-12 - 期刊:
- 影响因子:4
- 作者:
Xianliang Hu;Yixin Li;Hangjie Ji - 通讯作者:
Hangjie Ji
Thermocapillary instabilities in thin liquid films on a rotating cylinder
旋转圆柱体上薄液膜中的热毛细不稳定性
- DOI:
10.1016/j.ijheatmasstransfer.2025.127033 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:5.800
- 作者:
Souradip Chattopadhyay;Amar K. Gaonkar;Hangjie Ji - 通讯作者:
Hangjie Ji
Modeling reactive film flows down a heated fiber
- DOI:
10.1016/j.ces.2024.120551 - 发表时间:
2024-12-05 - 期刊:
- 影响因子:
- 作者:
Souradip Chattopadhyay;Hangjie Ji - 通讯作者:
Hangjie Ji
Mean field control of droplet dynamics with high order finite element computations
利用高阶有限元计算对液滴动力学进行平均场控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guosheng Fu;Hangjie Ji;Will Pazner;Wuchen Li - 通讯作者:
Wuchen Li
Hangjie Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
- 批准号:
MR/Y003926/1 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Fellowship
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
- 批准号:
2238486 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
- 批准号:
2312456 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Research Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
Gradient approximations and Hessian approximations: theory, algorithms and applications
梯度近似和 Hessian 近似:理论、算法和应用
- 批准号:
559838-2021 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Nonconvex Models for Structured Sensing: Theory, Algorithms, and Applications
协作研究:结构化传感非凸模型:理论、算法和应用
- 批准号:
2208612 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant