Extracting Spectral Information from Noisy Quantum Data
从噪声量子数据中提取光谱信息
基本信息
- 批准号:2310182
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum computing describes an innovative approach to computing that utilizes the principles of quantum mechanics to solve problems in science and engineering. Existing implementations of quantum computers are highly susceptible to unwanted external disturbances, known as “decoherence”, which result in the loss of quantum information. This decoherence poses a significant constraint on the range of problems that can be simulated effectively on quantum computers. The limitation is especially severe in the simulation of properties of physically relevant and technologically significant quantum mechanical systems, such as molecules or solids. However, substantial knowledge exists regarding the mathematical and physical properties of these systems. This project aims to leverage this insight to improve the accuracy of quantum mechanical simulations on quantum computers. It will do so by designing precise and practical methodologies for reducing noise and improving accuracy, thereby promoting the progress of science.All quantum computers built so far suffer from noise and decoherence issues. When quantum computers are used to simulate the properties of molecules and solids in condensed matter and quantum chemistry, the main property of interest is the excitation information encoded in the spectra of response functions. This spectral information has mathematical properties that severely constrain the allowed response functions, and that can therefore be employed as a ‘noise filter’ for quantum computing data. This project will investigate ways to employ this mathematical information in practical algorithms to reduce noise of quantum data. Implementations and tests with synthetic data and with data from present-day quantum computers are proposed. In addition, an outreach collaboration with the University of Michigan’s Museum of Natural History will introduce the public at schools and libraries to quantum phenomena including quantum coherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算描述了一种利用量子力学原理解决科学和工程问题的创新计算方法。量子计算机的现有实现非常容易受到不必要的外部干扰,称为“退相干”,这会导致量子信息的丢失。这种退相干对可以在量子计算机上有效模拟的问题的范围构成了重大限制。在模拟物理相关和技术重要的量子力学系统(如分子或固体)的性质时,这种限制尤其严重。然而,大量的知识存在关于这些系统的数学和物理性质。该项目旨在利用这一洞察力来提高量子计算机上量子力学模拟的准确性。它将通过设计精确而实用的方法来降低噪声和提高精度,从而促进科学的进步。迄今为止建造的所有量子计算机都存在噪声和退相干问题。当量子计算机用于模拟凝聚态和量子化学中分子和固体的性质时,感兴趣的主要性质是编码在响应函数光谱中的激发信息。这种光谱信息具有严格限制允许的响应函数的数学特性,因此可以用作量子计算数据的“噪声滤波器”。该项目将研究如何在实际算法中使用这些数学信息来减少量子数据的噪声。提出了使用合成数据和来自当今量子计算机的数据的实现和测试。此外,与密歇根大学自然历史博物馆的外联合作将向学校和图书馆的公众介绍量子现象,包括量子相干性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Gull其他文献
Large exciton binding energy in a bulk van der Waals magnet from quasi-1D electronic localization
准一维电子局域化在块状范德华磁体中的大激子结合能
- DOI:
10.1038/s41467-025-56457-x - 发表时间:
2025-01-29 - 期刊:
- 影响因子:15.700
- 作者:
Shane Smolenski;Ming Wen;Qiuyang Li;Eoghan Downey;Adam Alfrey;Wenhao Liu;Aswin L. N. Kondusamy;Aaron Bostwick;Chris Jozwiak;Eli Rotenberg;Liuyan Zhao;Hui Deng;Bing Lv;Dominika Zgid;Emanuel Gull;Na Hyun Jo - 通讯作者:
Na Hyun Jo
Denoising and Extension of Response Functions in the Time Domain.
时域响应函数的去噪和扩展。
- DOI:
10.1103/physrevlett.132.160403 - 发表时间:
2023 - 期刊:
- 影响因子:8.6
- 作者:
A. F. Kemper;Chao Yang;Emanuel Gull - 通讯作者:
Emanuel Gull
Green/WeakCoupling: Implementation of fully self-consistent finite-temperature many-body perturbation theory for molecules and solids
- DOI:
10.1016/j.cpc.2024.109380 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Sergei Iskakov;Chia-Nan Yeh;Pavel Pokhilko;Yang Yu;Lei Zhang;Gaurav Harsha;Vibin Abraham;Ming Wen;Munkhorgil Wang;Jacob Adamski;Tianran Chen;Emanuel Gull;Dominika Zgid - 通讯作者:
Dominika Zgid
重い電子化合物CeNiGe3の圧力下磁気相の研究
重电子化合物CeNiGe3压力下磁相的研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hiroshi Shinaoka;Emanuel Gull;Philipp Werner;池田陽一 - 通讯作者:
池田陽一
Dynamical susceptibility in DMFT: a sparse QMC sampling approach
DMFT 中的动态敏感性:稀疏 QMC 采样方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Dominique Geffroy;Hiroshi Shinaoka;Jan Kunes;Junya Otsuki;Markus Wallerberger;Emanuel Gull;Kazuyoshi Yoshimi - 通讯作者:
Kazuyoshi Yoshimi
Emanuel Gull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Gull', 18)}}的其他基金
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
- 批准号:
2310582 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CDS&E: Numerical Investigation of Two-Particle Response Functions of Correlated Materials
CDS
- 批准号:
2001465 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CDS&E: Numerical Investigation of Two-Particle Response Functions of Correlated Materials
CDS
- 批准号:
1606348 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Characterizing the recovery of spectral, temporal, and phonemic speech information from visual cues
表征从视觉线索中恢复频谱、时间和音位语音信息
- 批准号:
10563860 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Accelerating photonic quantum information processing by a spectral modulation of photon pairs
通过光子对的光谱调制加速光子量子信息处理
- 批准号:
20K14393 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Targeting Raman spectral information and its application to faster Raman imaging
针对拉曼光谱信息及其在更快拉曼成像中的应用
- 批准号:
20K15195 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spectral and spatial processing of wavelength information in the Drosophila visual system
果蝇视觉系统中波长信息的光谱和空间处理
- 批准号:
10219809 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Cell diagnosis by bridging Raman Spectral Imaging and Information Science
通过连接拉曼光谱成像和信息科学进行细胞诊断
- 批准号:
18F18719 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Temporal-Spectral Multimode Photonics for Quantum Information Science
用于量子信息科学的时谱多模光子学
- 批准号:
1620822 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Development of image measurement method for material information of tangible cultural property based on multi-spectral reflection model
基于多光谱反射模型的有形文化财产物质信息图像测量方法开发
- 批准号:
16K00448 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acquisition of Scene Illuminant Information using Omnidirectional Spectral HDR Imaging and its Application to Image Rendering
全向光谱HDR成像场景光源信息获取及其在图像渲染中的应用
- 批准号:
25730104 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
An Analysis of Spectral Information in Japanese Accent
日语口音的频谱信息分析
- 批准号:
23720212 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Visualization of the data from Spectral Profiler onboard Kaguya to retrieve the mineral information of the lunar surface
将 Kaguya 上的光谱分析仪数据可视化,以检索月球表面的矿物信息
- 批准号:
23740342 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Young Scientists (B)