CDS&E: Numerical Investigation of Two-Particle Response Functions of Correlated Materials

CDS

基本信息

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Advanced Cyberinfrastructure jointly fund this award, which supports theoretical and computational research aimed at understanding the relationship between experimental measurements and numerical simulations of materials in which strong electronic correlation effects are important. In particular, the team will focus on obtaining computational data simulating a variety of experiments such as nuclear magnetic resonance, neutron spectroscopy, and resonant inelastic x-ray scattering. Materials consist of electrons and ions arranged in a crystal lattice. In some materials, the motion of an electron is strongly interdependent on, or correlated with, the motion of many other electrons. As a consequence, these materials may exhibit unusual behavior including superconductivity, magnetism, and interesting electrical and optical properties. While these properties make them useful and interesting for technical applications, our standard theoretical tools for describing such materials are inadequate, and numerical methods are needed. The subject of this project is the development and application of accurate and controlled numerical methods that can describe correlated electron systems and compute experimentally measured quantities.The project will contribute to broader impacts by supporting the development and maintenance of sustainable open-source community software libraries, which will accelerate the development of future codes as well as provide reliable and state-of-the-art applications to the science community. The software libraries currently maintained by the PI are among the few established open-source libraries for calculations on strongly correlated systems. As part of the project, graduate students will be trained in modern theoretical techniques and in scientific software development.TECHNICAL SUMMARYThe Division of Materials Research and the Division of Advanced Cyberinfrastructure jointly fund this award, which supports theoretical and computational research aimed at understanding the relation between experimentally measured two-particle response functions and generalized susceptibilities of effective low-energy lattice models in systems where strong correlations are important. The project will combine newly developed numerical methods with large-scale calculations to compute the response functions of nuclear magnetic resonance (NMR), neutron spectroscopy, and resonant inelastic x-ray spectroscopy (RIXS) and will investigate the extent to which observed signals can be attributed to electron correlation effects. Susceptibilities reveal important information about collective excitations of a system and are directly measurable in experiment. However, the strong correlation physics of generalized susceptibilities measured by two-particle probes such as NMR, RIXS, or neutron scattering is theoretically not well understood. As a consequence, several contradictions in the interpretation of experimental results exist. This project will build on methods that have shown to be reliable for single-particle excitations that are measured in photoemission and scanning tunneling microscopy, and extend them to investigate two-particle correlation functions. By providing reliable results for the susceptibilities of fermionic lattice models and by computing response functions, this work will facilitate the separation of true electron correlation physics from model-dependent artifacts, which in turn will aid in the interpretation of experiments. Correlated electron materials are essential for modern technological applications such as information technology, energy technology, materials science, and nanoscience. By clarifying the basic behavior of susceptibilities and their relation to experimental work, this project will contribute to our understanding of correlated materials and their characterization. The project will contribute to broader impacts by supporting the development and maintenance of sustainable open-source community software libraries, which will accelerate the development of future codes as well as provide reliable and state-of-the-art applications to the science community. The software libraries currently maintained by the PI are among the few established open-source libraries for calculations on strongly correlated systems. As part of the project, graduate students will be trained in modern theoretical techniques and scientific software development.
该奖项由材料研究部和先进网络基础设施部共同资助,旨在支持理论和计算研究,旨在理解强电子相关效应重要的材料的实验测量和数值模拟之间的关系。特别是,该团队将专注于获得模拟各种实验的计算数据,如核磁共振、中子光谱和共振非弹性x射线散射。材料由排列在晶格中的电子和离子组成。在某些材料中,一个电子的运动与许多其他电子的运动密切相关。因此,这些材料可能表现出不寻常的行为,包括超导性、磁性和有趣的电学和光学性质。虽然这些性质使它们在技术应用中有用和有趣,但我们描述这些材料的标准理论工具是不够的,需要数值方法。该项目的主题是开发和应用精确和可控的数值方法,可以描述相关的电子系统和计算实验测量量。该项目将通过支持可持续开源社区软件库的开发和维护,产生更广泛的影响,这将加速未来代码的开发,并为科学界提供可靠和最先进的应用程序。目前由PI维护的软件库是少数已建立的用于强相关系统计算的开源库之一。作为该项目的一部分,研究生将接受现代理论技术和科学软件开发方面的培训。该奖项由材料研究部和高级网络基础设施部共同资助,支持理论和计算研究,旨在理解实验测量的两粒子响应函数与系统中有效低能晶格模型的广义磁化率之间的关系,其中强相关性很重要。该项目将把新开发的数值方法与大规模计算相结合,计算核磁共振(NMR)、中子能谱和共振非弹性x射线能谱(RIXS)的响应函数,并将研究观察到的信号在多大程度上可归因于电子相关效应。磁化率揭示了系统集体激励的重要信息,在实验中可以直接测量。然而,通过核磁共振、RIXS或中子散射等双粒子探针测量的广义磁化率的强相关物理在理论上还没有得到很好的理解。因此,在对实验结果的解释中存在一些矛盾。这个项目将建立在已经被证明是可靠的单粒子激发的方法上,这些方法是在光电发射和扫描隧道显微镜中测量的,并将它们扩展到研究双粒子相关函数。通过为费米子晶格模型的敏感性提供可靠的结果,并通过计算响应函数,这项工作将有助于将真正的电子相关物理从依赖于模型的工件中分离出来,这反过来将有助于解释实验。相关电子材料在信息技术、能源技术、材料科学、纳米科学等现代技术应用中是必不可少的。通过澄清磁化率的基本行为及其与实验工作的关系,本项目将有助于我们对相关材料及其表征的理解。该项目将通过支持可持续开源社区软件库的开发和维护,产生更广泛的影响,这将加速未来代码的开发,并为科学界提供可靠和最先进的应用程序。目前由PI维护的软件库是少数已建立的用于强相关系统计算的开源库之一。作为该项目的一部分,研究生将接受现代理论技术和科学软件开发方面的培训。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emanuel Gull其他文献

Large exciton binding energy in a bulk van der Waals magnet from quasi-1D electronic localization
准一维电子局域化在块状范德华磁体中的大激子结合能
  • DOI:
    10.1038/s41467-025-56457-x
  • 发表时间:
    2025-01-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Shane Smolenski;Ming Wen;Qiuyang Li;Eoghan Downey;Adam Alfrey;Wenhao Liu;Aswin L. N. Kondusamy;Aaron Bostwick;Chris Jozwiak;Eli Rotenberg;Liuyan Zhao;Hui Deng;Bing Lv;Dominika Zgid;Emanuel Gull;Na Hyun Jo
  • 通讯作者:
    Na Hyun Jo
Denoising and Extension of Response Functions in the Time Domain.
时域响应函数的去噪和扩展。
  • DOI:
    10.1103/physrevlett.132.160403
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. F. Kemper;Chao Yang;Emanuel Gull
  • 通讯作者:
    Emanuel Gull
Green/WeakCoupling: Implementation of fully self-consistent finite-temperature many-body perturbation theory for molecules and solids
  • DOI:
    10.1016/j.cpc.2024.109380
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sergei Iskakov;Chia-Nan Yeh;Pavel Pokhilko;Yang Yu;Lei Zhang;Gaurav Harsha;Vibin Abraham;Ming Wen;Munkhorgil Wang;Jacob Adamski;Tianran Chen;Emanuel Gull;Dominika Zgid
  • 通讯作者:
    Dominika Zgid
重い電子化合物CeNiGe3の圧力下磁気相の研究
重电子化合物CeNiGe3压力下磁相的研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Shinaoka;Emanuel Gull;Philipp Werner;池田陽一
  • 通讯作者:
    池田陽一
Dynamical susceptibility in DMFT: a sparse QMC sampling approach
DMFT 中的动态敏感性:稀疏 QMC 采样方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominique Geffroy;Hiroshi Shinaoka;Jan Kunes;Junya Otsuki;Markus Wallerberger;Emanuel Gull;Kazuyoshi Yoshimi
  • 通讯作者:
    Kazuyoshi Yoshimi

Emanuel Gull的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emanuel Gull', 18)}}的其他基金

NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Continuing Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
  • 批准号:
    2310582
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Standard Grant
Extracting Spectral Information from Noisy Quantum Data
从噪声量子数据中提取光谱信息
  • 批准号:
    2310182
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Standard Grant
CDS&E: Numerical Investigation of Two-Particle Response Functions of Correlated Materials
CDS
  • 批准号:
    2001465
  • 财政年份:
    2020
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Continuing Grant

相似海外基金

Largescale numerical investigation on the potential of MTL to produce supershear earthquakes
MTL 产生超剪切地震潜力的大规模数值研究
  • 批准号:
    23K22843
  • 财政年份:
    2024
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ThorougH experiMental and numerical investigation of Coupled processes for geologiC Carbon Storage
地质碳储存耦合过程的彻底实验和数值研究
  • 批准号:
    EP/X026019/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Fellowship
Numerical and experimental investigation of the impact of preferential flow and nonequilibrium thermodynamics on meltwater transport through snow
优先流和非平衡热力学对融水通过雪输送影响的数值和实验研究
  • 批准号:
    2243631
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
  • 批准号:
    2238360
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Continuing Grant
SHINE: A Numerical Investigation into Coronal Mass Ejections (CME-CME) Interaction Events
SHINE:日冕物质抛射 (CME-CME) 相互作用事件的数值研究
  • 批准号:
    2301403
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Standard Grant
Numerical and experimental investigation of fluoride crystals as vacuum ultr aviolet light emitters
氟化物晶体作为真空紫外光发射器的数值和实验研究
  • 批准号:
    23K13047
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental Investigation and Numerical Analysis of the Behaviour of Plate Anchor Foundations Subjected to Cyclic Loading in Sands
砂土中循环荷载作用下板锚基础性能的实验研究和数值分析
  • 批准号:
    2888310
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Studentship
Investigation for microscopic failure mechanism of CFRP and development for multiscale numerical method
CFRP微观失效机理研究及多尺度数值方法开发
  • 批准号:
    23K03588
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Debris Flow behaviour and interaction with mitigation structures using physical and numerical modelling
使用物理和数值模型研究泥石流行为以及与缓解结构的相互作用
  • 批准号:
    2882193
  • 财政年份:
    2023
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Studentship
Largescale numerical investigation on the potential of MTL to produce supershear earthquakes
MTL 产生超剪切地震潜力的大规模数值研究
  • 批准号:
    22H01573
  • 财政年份:
    2022
  • 资助金额:
    $ 35.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了