Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
基本信息
- 批准号:2310324
- 负责人:
- 金额:$ 50.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Earth’s cooling rate affects many processes necessary for a dynamic, living world, from plate tectonics to generation of the planet’s magnetic field. Understanding the establishment, evolution, and continued functioning of such processes requires knowledge of the planet’s thermal history, but much of that history remains unconstrained in part because several controlling mechanisms have yet to be quantified. As such, this award aims to study how Earth’s cooling rate may be altered through variable insulation of the planet’s interior by continents along the surface and large, continent-sized piles of anomalous material (Large Low Shear Velocity Provinces; LLSVPs) covering portions of the outer core. Previous studies separately examined the insulating effects of continents and LLSVPs, but none focused on the potentially counteracting effects of simultaneous insulating bodies: continents are predicted to increase the mantle’s internal temperature while LLSVPs decrease it. This study will quantify the resulting dynamic and thermal effects of such bodies and the implications for the Earth’s cooling history, plate tectonics, and magnetic field. Furthermore, both continents and LLSVPs act as chemical reservoirs that isolate critical elements from participating in global cycling for potentially long portions of Earth’s history. However, the formation and evolution of LLSVPs is still actively debated. This study will identify their likely thermal and chemical fingerprints as an additional means of testing their potential formation timing and duration. In addition to scientific advances, this project will expand educational opportunities centered on the deep Earth through an interdisciplinary game development program that will produce a new, widely distributed, educationally focused video game designed to combat several geoscience misconceptions while supporting a diverse, interdisciplinary group of ten undergraduate student developers. Finally, this award supports two graduate students and a post-doctoral scholar at two rural, land-grant universities, Washington State University and University of Idaho. This award supports a novel study that will systematically evaluate how simultaneous surface and basal insulating bodies in Earth’s mantle (continents + LLSVPs) jointly alter the thermal evolution and internal mantle dynamics of the Earth. Two-dimensional spherical numerical simulations will be used to quantify the impacts of simulated LLSVP and continental materials in models of increasing rheological, thermal, and temporal complexity to address three research objectives: (1) isolate the fundamental processes governing interactions of surface (continent) and basal (LLSVP) insulators, (2) quantify the influence of complex rheology and internal heating on the basal and surface insulator convective system, and (3) examine impacts of time-evolving basal and surface insulators through Earth’s history. Numerical simulations of the Earth’s mantle subject to surface (continent) and basal (LLSVP) insulators will be conducted using the highly parallel finite-element code ASPECT (Advanced Solver for Problems in Earth’s ConvecTion). Simulations will be solved in parallel across ~32-256 computational cores on University of Idaho’s Falcon supercomputer (33k cores, 1.17 Petaflop) or Washington State University’s Kamiak high performance computer cluster. For each of the ~200 planned simulations, the conservation equations will be discretized across a dynamically refined grid of ~2 million finite elements with enhanced element resolution near strong thermal and compositional gradients, allowing an accurate quantification of heat transfer through the model system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从板块构造到地球磁场的产生,地球的冷却速度影响着一个动态的、有生命的世界所必需的许多过程。了解这些过程的建立、演化和持续运作需要了解地球的热历史,但大部分历史仍然没有受到限制,部分原因是一些控制机制尚未被量化。因此,该奖项旨在研究地球的冷却速度是如何通过地球内部的不同绝缘而改变的,这些绝缘是由沿表面的大陆和覆盖部分外核的大块、大陆大小的异常物质(大低剪切速度省;LLSVPs)造成的。先前的研究分别考察了大陆和llsvp的绝缘作用,但没有研究关注同时存在的绝缘体的潜在抵消作用:预计大陆会增加地幔内部温度,而llsvp会降低地幔内部温度。这项研究将量化这些天体产生的动力和热效应,以及对地球冷却历史、板块构造和磁场的影响。此外,大陆和llsvp都是化学储层,在地球历史的很长一段时间里,它们将关键元素与参与全球循环隔离开来。然而,llsvp的形成和演化仍然存在争议。这项研究将确定其可能的热指纹和化学指纹,作为测试其潜在地层时间和持续时间的额外手段。除了科学进步之外,该项目还将通过跨学科游戏开发项目扩大以地球深处为中心的教育机会,该项目将开发一款新的、广泛分布的、以教育为重点的视频游戏,旨在消除几个地球科学的误解,同时支持一个由10名本科生组成的多元化、跨学科团队。最后,该奖项支持两所农村赠地大学(华盛顿州立大学和爱达荷大学)的两名研究生和一名博士后学者。该奖项支持一项新的研究,该研究将系统地评估地幔中同时存在的表面和基底绝缘体(大陆+ llsvp)如何共同改变地球的热演化和内部地幔动力学。二维球面数值模拟将用于量化模拟LLSVP和大陆材料在流变学、热学和时间复杂性增加的模型中的影响,以解决三个研究目标:(1)分离控制表面(大陆)和基底(LLSVP)绝缘体相互作用的基本过程,(2)量化复杂流变学和内部加热对基底和表面绝缘体对流系统的影响,(3)通过地球历史研究时间演变的基底和表面绝缘体的影响。将使用高度并行的有限元程序ASPECT (Advanced Solver for Problems in Earth’s ConvecTion)对地表(大陆)和基底(LLSVP)绝缘体作用下的地幔进行数值模拟。模拟将在爱达荷大学的猎鹰超级计算机(33k核,1.17 Petaflop)或华盛顿州立大学的Kamiak高性能计算机集群上并行解决~32-256个计算核。对于计划的200次模拟中的每一次,守恒方程将在一个由200万个有限元单元组成的动态精细网格中离散化,在强热梯度和成分梯度附近具有增强的单元分辨率,从而允许通过模型系统精确量化传热。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Mittelstaedt其他文献
Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle
羽流弯曲的时间变化:表征流变复杂的地幔中倾斜羽流管道的脉动
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Derek Neuharth;Eric Mittelstaedt - 通讯作者:
Eric Mittelstaedt
Eric Mittelstaedt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Mittelstaedt', 18)}}的其他基金
CAREER: Moving into the 3rd Dimension: Quantifying the influence of Magmatism, Tectonics, Hydrothermal Cooling, and Hotspots on the Dynamic Evolution of Divergent Plate Boundaries
职业:进入第三维度:量化岩浆作用、构造、热液冷却和热点对发散板块边界动态演化的影响
- 批准号:
1753354 - 财政年份:2018
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
EAGER: Development of a Prototype 2D Acoustic Tomography System for Rapid Temperature Measurements in Diffuse Hydrothermal Effluent
EAGER:开发用于快速测量扩散热液流出物温度的原型 2D 声学层析成像系统
- 批准号:
1744255 - 财政年份:2017
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Variations in Hotspot Volcanism as a Key to Understanding Deep Mantle Dynamics
热点火山活动的变化是理解深部地幔动力学的关键
- 批准号:
1520856 - 财政年份:2015
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling hydrothermal recharge and outflow in oceanic crust analogs with sharp permeability gradients
合作研究:模拟具有尖锐渗透率梯度的洋壳类似物的热液补给和流出
- 批准号:
1537650 - 财政年份:2015
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Emplacement of regularly spaced volcanic centers in the East African Rift: Melt production or melt extraction?
东非大裂谷中规则分布的火山中心的位置:熔体生产还是熔体提取?
- 批准号:
1456664 - 财政年份:2015
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: Coupling Mantle Volatiles, Eruption Dynamics, and Tectonics on the Mid-Atlantic Ridge
合作研究:地幔挥发物、喷发动力学和大西洋中脊构造的耦合
- 批准号:
1260578 - 财政年份:2013
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Using Available Sentry AUV aboard R/V Atlantis to Measure Hydrothermal Heat Flux at Axial and Main Endeavour Fields
EAGER:合作研究:使用 R/V Atlantis 上可用的 Sentry AUV 测量轴向和主奋进场的热液热通量
- 批准号:
1332371 - 财政年份:2013
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Interdisciplinary Studies of the Galapagos Earth System
加拉帕戈斯地球系统的跨学科研究
- 批准号:
1145271 - 财政年份:2012
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
International Research Fellowship Program: The Origin and Evolution of Mid-Ocean Ridge Segmentation at Normal and Hotspot Affected Ridges
国际研究奖学金计划:正常和热点影响海脊的大洋中脊分割的起源和演变
- 批准号:
0757920 - 财政年份:2008
- 资助金额:
$ 50.96万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
- 批准号:
2310325 - 财政年份:2023
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211617 - 财政年份:2022
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211618 - 财政年份:2022
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211616 - 财政年份:2022
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Computational Study of Structure and Thermodynamics of Rare Earth Oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构与热力学的实验与计算研究
- 批准号:
2015852 - 财政年份:2020
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Collaborative research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
- 批准号:
1835939 - 财政年份:2018
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Collaborative Research: Instabilities and Turbulence in Gravity Wave Dissipation and Formation of Thermospheric Sodium Layers above the Andes
合作研究:重力波耗散的不稳定性和湍流以及安第斯山脉上方热层钠层的形成
- 批准号:
1759471 - 财政年份:2018
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Collaborative Research: Instabilities and Turbulence in Gravity Wave Dissipation and Formation of Thermospheric Sodium Layers above the Andes
合作研究:重力波耗散的不稳定性和湍流以及安第斯山脉上方热层钠层的形成
- 批准号:
1759573 - 财政年份:2018
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant