EAGER: Development of a Prototype 2D Acoustic Tomography System for Rapid Temperature Measurements in Diffuse Hydrothermal Effluent

EAGER:开发用于快速测量扩散热液流出物温度的原型 2D 声学层析成像系统

基本信息

  • 批准号:
    1744255
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Mid-ocean ridges, the boundaries between separating tectonic plates, are some of the most volcanically active features on Earth. Along many ridges, storage of molten magma in shallow chambers results in heating of seawater stored in the porous crust. Thermally buoyant, this seawater rises through the crust, is chemically altered by water-rock interactions, and finally exits the seafloor at hydrothermal vents. It is now recognized that this type of deep-sea hydrothermal circulation plays a key role in controlling long-term ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse chemosynthetic ecosystems found nowhere else on the planet. However, quantifying the biological and chemical impact of hydrothermal circulation requires knowledge of the volume, heat, and chemical fluxes exiting the seafloor, which are notoriously difficult to quantify. One large source of uncertainty in flux estimates lies in the widespread distribution of lower-temperature (/=100°C) diffuse hydrothermal fluids, which are commonly transparent and escape through fractures, porous rock, and sediment. It is estimated that diffuse fluids contribute more to the heat and volume fluxes of hydrothermal systems than higher temperature (300°C), "black smoker" style vents. Existing methods to quantify the flux of diffuse hydrothermal venting are limited by small measurement areas, measurements of a single quantity (e.g., only temperature or only velocity), or are invasive and alter the flow as they measure it. This project will develop new technologies for improved measurement of diffuse venting. Researchers will collaborate with University of Idaho, School of Engineering undergraduate students as part of their senior year Capstone Design Course to develop a prototype two-dimensional (2D) acoustic tomography system that can rapidly measure the temperature of anomalously warm, upwelling diffuse fluids across a ~1 m2 area. Development of these technologies will lead to future construction of a deep-sea measurement system targeting diffuse hydrothermal venting.The primary goal of this project is to develop a prototype two-dimensional (2D) acoustic tomography system capable of a time series of rapid (1 Hz) measurements of the temperature of anomalously warm, upwelling fluids at a spatial resolution of centimeters across a ~1 square meter area. The proposed system will consist of ~20-25 acoustic immersion transducers fixed at known spacing on a square, rigid frame. A subset of the transducers (~4-6) will emit staggered acoustic chirp pulses and the system will measure the pulse travel time between the emitting and receiving transducers. Using travel-time acoustic tomography, these travel times will be converted to sound speed and finally temperature throughout the 2D domain. Development will begin with a two-transducer, 1D system to test appropriate signal frequencies (e.g., kHz or MHz), chirp type (increasing or decreasing frequency), transducer shapes (e.g., spherical, planar, cylindrical), and effective measurement rates. Building upon these results, the final prototype will utilize the optimum transducer shape and pulse frequencies. After construction, the system will undergo submergence tests at the University of Idaho with controlled sources of warm, buoyantly rising fluids. To calculate fluid temperatures, we will evaluate several travel-time inversion methods including the algebraic reconstruction technique (ART), multiplicative algebraic reconstruction technique (MART), and simultaneous iterative reconstruction technique (SIRT). Final results will be compared to thermocouple measurements distributed throughout the 2D measurement domain.
中山脊,分离构造板之间的边界是地球上最有活跃的火山活动特征。沿着许多山脊,在浅室中熔融岩浆的储存导致储存在多孔外壳中的海水加热。热浮力,这种海水从地壳上升起,被水摇滚相互作用化学改变,最后从水热通风孔出发了海底。现在已经认识到,这种类型的深海水热循环在控制长期的海洋化学,海洋壳的热和化学结构以及独特而多样的化学合成生态系统的演变中起着关键作用。但是,量化水热循环的生物学和化学影响需要了解出现海底的体积,热量和化学通量,众所周知,这些通量难以量化。通量估计的一种不确定性的一个很大的不确定性来源在于低温(/= 100°C)弥漫性热液流体的宽度分布,通常是透明的,并通过裂缝,多孔岩石和沉积物逃脱。据估计,与更高温度(300°C)(“黑人吸烟者”风格的通风孔相比,弥漫通量对热液系统的热量和体积通量更大。量化扩散氢气通量通量的现有方法受到小测量区域的限制,单个量的测量值(例如,仅温度或仅速度),或者是侵入性并在测量时改变流量。该项目将开发新技术,以改善弥散排气的测量。研究人员将与爱达荷大学(University of Idaho),工程本科生合作,作为其高年级顶峰设计课程的一部分,以开发一种原型二维(2D)声学断层扫描系统,该系统可以快速衡量〜1平方米的异常温暖,上升,上升的扩散液的温度。这些技术的开发将导致未来的深海测量系统靶向弥漫性氢气。所提出的系统将由〜20-25个固定在正方形的刚性框架上的已知间距上的声音浸入式传感器组成。换能器的子集(〜4-6)将发出交错的声音chirp脉冲,系统将测量发射和接收传感器之间的脉冲行进时间。使用旅行时间的声学断层扫描,这些旅行时间将转换为声速,最后在整个2D域中温度。开发将从测试适当的信号频率(例如KHz或MHz),CHIRP类型(增加或降低频率),换能器形状(例如球形,平面,平面,圆柱形,圆柱形)和有效测量率的两种透射器1D系统开始。在这些结果的基础上,最终的原型将利用最佳的传感器形状和脉搏频率。施工后,该系统将在爱达荷大学接受淹没测试,并受控温暖,浮动的液体来源。为了计算流体温度,我们将评估几种旅行时间反演方法,包括代数重建技术(ART),乘法代数重建技术(MART)和简单的迭代重建技术(SIRT)。将最终结果与分布在2D测量域中的热电偶测量进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Mittelstaedt其他文献

Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle
羽流弯曲的时间变化:表征流变复杂的地幔中倾斜羽流管道的脉动
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek Neuharth;Eric Mittelstaedt
  • 通讯作者:
    Eric Mittelstaedt

Eric Mittelstaedt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Mittelstaedt', 18)}}的其他基金

Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
  • 批准号:
    2310324
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
CAREER: Moving into the 3rd Dimension: Quantifying the influence of Magmatism, Tectonics, Hydrothermal Cooling, and Hotspots on the Dynamic Evolution of Divergent Plate Boundaries
职业:进入第三维度:量化岩浆作用、构造、热液冷却和热点对发散板块边界动态演化的影响
  • 批准号:
    1753354
  • 财政年份:
    2018
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling hydrothermal recharge and outflow in oceanic crust analogs with sharp permeability gradients
合作研究:模拟具有尖锐渗透率梯度的洋壳类似物的热液补给和流出
  • 批准号:
    1537650
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Variations in Hotspot Volcanism as a Key to Understanding Deep Mantle Dynamics
热点火山活动的变化是理解深部地幔动力学的关键
  • 批准号:
    1520856
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Emplacement of regularly spaced volcanic centers in the East African Rift: Melt production or melt extraction?
东非大裂谷中规则分布的火山中心的位置:熔体生产还是熔体提取?
  • 批准号:
    1456664
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Coupling Mantle Volatiles, Eruption Dynamics, and Tectonics on the Mid-Atlantic Ridge
合作研究:地幔挥发物、喷发动力学和大西洋中脊构造的耦合
  • 批准号:
    1260578
  • 财政年份:
    2013
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Using Available Sentry AUV aboard R/V Atlantis to Measure Hydrothermal Heat Flux at Axial and Main Endeavour Fields
EAGER:合作研究:使用 R/V Atlantis 上可用的 Sentry AUV 测量轴向和主奋进场的热液热通量
  • 批准号:
    1332371
  • 财政年份:
    2013
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Interdisciplinary Studies of the Galapagos Earth System
加拉帕戈斯地球系统的跨学科研究
  • 批准号:
    1145271
  • 财政年份:
    2012
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: The Origin and Evolution of Mid-Ocean Ridge Segmentation at Normal and Hotspot Affected Ridges
国际研究奖学金计划:正常和热点影响海脊的大洋中脊分割的起源和演变
  • 批准号:
    0757920
  • 财政年份:
    2008
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Fellowship Award

相似国自然基金

市场公平竞争与企业发展:指标测度、影响机理与效应分析
  • 批准号:
    72373155
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
中性胆固醇酯水解酶1(NCEH1)在肺动脉高压发生发展中的重要作用及机制研究
  • 批准号:
    82300074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
VHL/TRF1调控端粒功能在肾癌发生发展过程中的作用及机制研究
  • 批准号:
    82302964
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DHX15 R222G通过影响TFIP11-DHX15-U6 snRNA剪接体形成参与AML发生发展的作用机制研究
  • 批准号:
    82300166
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去泛素化酶USP25通过TRAF6/NF-κB信号通路调控绝经后骨质疏松发生发展的机制研究
  • 批准号:
    82301785
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of the initial prototype of a pill sensor to detect colonic polyps and early bowel cancer
开发用于检测结肠息肉和早期肠癌的药丸传感器的初始原型
  • 批准号:
    MR/Y503411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
Novel 'extended labour induction' balloon to improve safety of labour induction: Prototype development and preliminary clinical study
新型“延长引产”球囊可提高引产安全性:原型开发和初步临床研究
  • 批准号:
    MR/Y503423/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了