Toward Automated Uncertainty Quantification in Causal Inference
因果推理中的自动化不确定性量化
基本信息
- 批准号:2310831
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When studying cause-and-effect relationships or making important decisions based on data, researchers and decision-makers often encounter uncertainties that can impact the reliability and trustworthiness of their conclusions. Understanding and quantifying these uncertainties is crucial for making informed choices, whether in scientific experiments, policy-making, or designing machine learning systems. To this end, the project aims to develop algorithms that can effectively address the challenge of uncertainty quantification in causal inference. In particular, many current approaches to quantifying uncertainty in causal relationships rely on sophisticated mathematical techniques that may not align well with real-world scenarios. This project seeks to change the situation by designing algorithms that are both theoretically sound and practically applicable across a wide range of situations. This project also provides research training opportunities for graduate students. Technically, the project will focus on uncertainties in causal inference arising from two sources: uncertain causal graphs and limited informativeness of available data, both of which have significant implications for causal conclusions and downstream decision-making. To tackle these challenges, this project will develop algorithms that provide flexible and statistically valid uncertainty estimates, minimizing their dependence on specific causal problems. Leveraging recent advancements in algorithmic stability and private data analysis techniques, confidence intervals for causal estimates will be constructed, even when the causal graph is uncertain or learned from data. Additionally, these confidence intervals will be integrated with the available domain knowledge to further quantify the uncertainty arising from limited domain knowledge and the identification power of the data. Taken together, this project will facilitate the integration of different uncertainties, ultimately leading to more reliable and automated uncertainty quantification in causal inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在研究因果关系或根据数据做出重要决策时,研究人员和决策者经常会遇到影响其结论可靠性和可信度的不确定性。无论是在科学实验、政策制定还是设计机器学习系统中,理解和量化这些不确定性对于做出明智的选择至关重要。为此,该项目旨在开发能够有效解决因果推理中不确定性量化挑战的算法。特别是,目前许多量化因果关系不确定性的方法依赖于复杂的数学技术,可能与现实世界的情况不太一致。该项目旨在通过设计理论合理且实际适用于各种情况的算法来改变这种情况。本项目也为研究生提供了研究训练的机会。从技术上讲,该项目将侧重于因果推理中的不确定性,这些不确定性来自两个来源:不确定的因果图和有限的可用数据信息,这两个来源对因果结论和下游决策都有重大影响。为了应对这些挑战,该项目将开发算法,提供灵活和统计有效的不确定性估计,最大限度地减少对特定因果问题的依赖。利用算法稳定性和私有数据分析技术的最新进展,即使因果图不确定或从数据中学习,也将构建因果估计的置信区间。此外,这些置信区间将与可用的领域知识相结合,以进一步量化由有限的领域知识和数据的识别能力引起的不确定性。综上所述,本项目将促进不同不确定性的整合,最终在因果推理中实现更可靠和自动化的不确定性量化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yixin Wang其他文献
How In-Context Learning Emerges from Training on Unstructured Data: On the Role of Co-Occurrence, Positional Information, and Noise Structures
非结构化数据训练如何产生情境学习:论共现、位置信息和噪声结构的作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kevin Christian Wibisono;Yixin Wang - 通讯作者:
Yixin Wang
datalogic approach to analyzing gene expression
分析基因表达的 Datalogic 方法
- DOI:
10.1007/bf02816370 - 发表时间:
2015 - 期刊:
- 影响因子:2.6
- 作者:
P. Woolf;Yixin Wang;Aron Marchler;J. Thompson;Sophie Siguenza;A. Friedrich;F. Plewniak - 通讯作者:
F. Plewniak
Government Competition, Transportation Infrastructure Construction and Industrial Agglomeration
政府竞争、交通基础设施建设与产业集聚
- DOI:
10.5430/jbar.v10n1p1 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yanru Deng;Yixin Wang - 通讯作者:
Yixin Wang
Paclitaxel loaded self-assembled nanocarrier reduces multidrug resistance in lung cancer
负载紫杉醇的自组装纳米载体可降低肺癌的多药耐药性
- DOI:
10.1016/j.jconrel.2013.08.194 - 发表时间:
2013 - 期刊:
- 影响因子:10.8
- 作者:
Zhiwen Zhang;Huihui Bu;Zeying Liu;Yixin Wang;Baohua Niu;Yaping Li - 通讯作者:
Yaping Li
14.382 Spring 2017 Lecture 1: Least Squares, Adaptive Partialling Out, Simultaneous Inference
14.382 2017年春季第一讲:最小二乘法、自适应分区、同时推理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yixin Wang;J. Zubizarreta - 通讯作者:
J. Zubizarreta
Yixin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Collaborative R&D
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
- 批准号:
IC230100001 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Industrial Transformation Training Centres
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Studentship
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
- 批准号:
EP/Y002121/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Research Grant
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
- 批准号:
24K20757 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
- 批准号:
2345097 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant