Finite multivariate density mixtures: applications and new approaches
有限多元密度混合物:应用和新方法
基本信息
- 批准号:2311103
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cluster analysis and classification of multivariate datasets are two of the most important tasks in modern statistical and data sciences. By leveraging copula-based density mixtures, this project will introduce new methods for clustering and classification of multivariate data which exhibit sophisticated dependence properties. The proposed methods will provide more reliable clustering solutions that could be in turn used, for example, for development of new therapeutic drugs and more precise quantification of gene interactions. This project will involve students, both at the undergraduate and graduate levels, to work on the computational aspects of this interdisciplinary research. The particular focus of the project will be on bolstering broader participation in statistical sciences and involvement of mentees from the underrepresented groups. Many of the students will be recruited through the National Alliance for Doctoral Studies in the Mathematical Sciences (commonly called simply “Math Alliance”) that is headquartered at Purdue University.Multivariate mixture models are widely applicable in many areas of statistics. They are particularly useful in clustering and classification of multivariate high-dimensional data. The majority of model-based clustering techniques for multivariate data are based on multivariate normal models and their direct generalizations. However, this approach is quite restrictive since, in most cases, it is difficult to model clusters of non-elliptical shapes. Even where it is possible, these models tend to be limited in their capabilities to cluster multivariate data of mixed types that include both continuous and discrete random variables. This project will develop an alternative to the existing model-based clustering methods for multivariate data. This alternative is based on using copula-based density mixtures which will allow for modeling a vast variety of dependence structures. Furthermore, the proposed solution will also allow for the principled clustering of datasets containing both continuous and discrete observations. The immediate outcome of this project will be the development of a family of computationally efficient algorithms. Such algorithms will provide reliable clustering of objects under the minimal assumptions. The proposed methodology will be widely applicable to such areas as clustering of genes and other biological entities in transcriptomics data as well as clustering of text documents, where the number of dimensions may be equal to the size of the vocabulary.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多变量数据集的聚类分析和分类是现代统计和数据科学中的两个最重要的任务。通过利用基于Copula的密度混合,该项目将引入新的方法来对表现出复杂的相关性属性的多变量数据进行聚类和分类。建议的方法将提供更可靠的聚类解决方案,这些解决方案可用于例如开发新的治疗药物和更精确地量化基因相互作用。这个项目将让本科生和研究生参与这项跨学科研究的计算方面的工作。该项目的特别重点将是加强对统计科学的更广泛参与以及来自代表性不足群体的受训者的参与。许多学生将通过总部设在普渡大学的全国数学科学博士研究联盟(俗称数学联盟)招收。多元混合模型在许多统计领域都有广泛的应用。它们在多变量高维数据的聚类和分类中特别有用。大多数基于模型的多变量数据聚类技术都是基于多变量正态模型及其直接推广。然而,这种方法有很大的局限性,因为在大多数情况下,很难对非椭圆形状的簇进行建模。即使在可能的情况下,这些模型在组合包括连续和离散随机变量的混合类型的多变量数据方面的能力往往也是有限的。该项目将开发一种替代现有的基于模型的多变量数据聚类方法。这一替代方案的基础是使用基于Copula的密度混合物,这将允许对各种依赖结构进行建模。此外,拟议的解决方案还将允许对包含连续和离散观测的数据集进行原则性分组。这个项目的直接结果将是开发出一系列计算效率高的算法。这样的算法将在最小的假设下提供可靠的对象聚类。建议的方法将广泛适用于转录数据中的基因和其他生物实体的聚类以及文本文档的聚类,其中维度的数量可能等于词汇表的大小。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Levine其他文献
Cardiomyopathy Following Latrodectus Envenomation
斑鸠螫毒后的心肌病
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.1
- 作者:
Michael Levine;J. Canning;Robyn Chase;A. Ruha - 通讯作者:
A. Ruha
A comparative analysis of social sciences citation tools
社会科学引文工具的比较分析
- DOI:
10.1108/14684520911001954 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Michael Levine;Esther L. Gil - 通讯作者:
Esther L. Gil
Calcium imaging and single cell optogenetic analysis of a neural circuit for generating swimming
产生游泳的神经回路的钙成像和单细胞光遗传学分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Takeo Horie;Masamichi Ohkura;Kotaro Shimai;Ryoko Horie;Yasunori Sasakura, Takehiro Kusakabe;Junichi Nakai;Michael Levine;Masashi Nakagawa - 通讯作者:
Masashi Nakagawa
Comparison of Prothrombin Time and Aspartate Aminotransferase in Predicting Hepatotoxicity After Acetaminophen Overdose: a Response
- DOI:
10.1007/s13181-015-0514-8 - 发表时间:
2015-11-13 - 期刊:
- 影响因子:2.600
- 作者:
Michael Levine;Ayrn D. O’Connor;Angela Padilla-Jones;Richard Gerkin - 通讯作者:
Richard Gerkin
IUPHAR-review: The Integration of Classic Psychedelics into Current Substance Use Disorder Treatment Models.
IUPHAR 评论:经典迷幻药融入当前药物使用障碍治疗模型。
- DOI:
10.1016/j.phrs.2023.106998 - 发表时间:
2023 - 期刊:
- 影响因子:9.3
- 作者:
D. Yaden;Andrea P. Berghella;Peter S. Hendricks;Mary E. Yaden;Michael Levine;Julia Rohde;Sandeep M Nayak;Matthew W. Johnson;A. Garcia - 通讯作者:
A. Garcia
Michael Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Levine', 18)}}的其他基金
Fostering STEM Trajectories: Bridging Early Childhood Education Research, Practice, and Policy
促进 STEM 发展轨迹:架起幼儿教育研究、实践和政策的桥梁
- 批准号:
1417878 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Enabling Productive, High-Performance Data Analytics
实现高效、高性能的数据分析
- 批准号:
1234749 - 财政年份:2012
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Collaborative Research: Estimation, Inference, and Computation for Finite Nonparametric Mixtures
协作研究:有限非参数混合物的估计、推理和计算
- 批准号:
1208994 - 财政年份:2012
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Society Developmental Biology Annual Meetings 2012-2014 Conference: July 19-23, 2012 Montreal Canada, 2013 Mexico and 2014 Washington State
社会发育生物学年会2012-2014年会议:2012年7月19日至23日加拿大蒙特利尔、2013年墨西哥和2014年华盛顿州
- 批准号:
1219629 - 财政年份:2012
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: A Systems Biology Approach to Understanding Mechanisms of Organismal Evolution; Montevideo, Uruguay; April 16-25, 2012
泛美高级研究所:理解有机体进化机制的系统生物学方法;
- 批准号:
1123512 - 财政年份:2011
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
A Very Large Shared Memory System for Science and Engineering
用于科学与工程的超大型共享内存系统
- 批准号:
1041726 - 财政年份:2010
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Heart Morphogenesis in the Ascidian, Ciona Intestinalis
海鞘、肠海鞘的心脏形态发生
- 批准号:
0745322 - 财政年份:2008
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
"Nonparametric Regression Methods For Nonlinear Time Series Models"
“非线性时间序列模型的非参数回归方法”
- 批准号:
0805748 - 财政年份:2008
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
SCI: Teragrid Resource Partners
SCI:Teragrid 资源合作伙伴
- 批准号:
0504078 - 财政年份:2005
- 资助金额:
$ 16万 - 项目类别:
Cooperative Agreement
SCI: ETF Early Operations - PSC
SCI:ETF 早期运营 - PSC
- 批准号:
0451545 - 财政年份:2005
- 资助金额:
$ 16万 - 项目类别:
Cooperative Agreement
相似国自然基金
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
相似海外基金
Validation of Prenatal Rabbit Hypoxia Ischemia as a Model of Cerebral Palsy-induced Pain
产前兔缺氧缺血作为脑瘫引起的疼痛模型的验证
- 批准号:
10813313 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Naturalistic Brain Mapping in Children with Diffuse Optical Tomography
利用漫射光学断层扫描对儿童进行自然脑图绘制
- 批准号:
10720660 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Validation of a pediatric thrombosis risk assessment model and characterization of bleeding in hospitalized children through the Children's Hospital Acquired Thrombosis (CHAT) Consortium
通过儿童医院获得性血栓 (CHAT) 联盟验证儿科血栓风险评估模型和住院儿童出血特征
- 批准号:
10426594 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
MR Biomarkers of Inflammation in Knee Osteoarthritis
膝骨关节炎炎症的 MR 生物标志物
- 批准号:
10476943 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Simultaneous EEG/fMRI to disentangle neural and vascular mechanisms of Alzheimer's disease pathology
同步脑电图/功能磁共振成像可解开阿尔茨海默病病理学的神经和血管机制
- 批准号:
10525421 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Validation of a pediatric thrombosis risk assessment model and characterization of bleeding in hospitalized children through the Children's Hospital Acquired Thrombosis (CHAT) Consortium
通过儿童医院获得性血栓 (CHAT) 联盟验证儿科血栓风险评估模型和住院儿童出血特征
- 批准号:
10673606 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Simultaneous EEG/fMRI to disentangle neural and vascular mechanisms of Alzheimer's disease pathology
同步脑电图/功能磁共振成像可解开阿尔茨海默病病理学的神经和血管机制
- 批准号:
10677683 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Identify the schemata by which subcortical signals influence frontal cortical dynamics and cognitive behaviors
识别皮层下信号影响额叶皮层动态和认知行为的图式
- 批准号:
10546515 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Identify the schemata by which subcortical signals influence frontal cortical dynamics and cognitive behaviors
识别皮层下信号影响额叶皮层动态和认知行为的图式
- 批准号:
10294404 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Children's Exposure to Indoor and Outdoor Air Pollution within the SHEAR Project in Rwanda
卢旺达 SHEAR 项目中儿童接触室内和室外空气污染的情况
- 批准号:
10615232 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别: