Collaborative Research: New Anodic Catalysts for Water Oxygen Evolution Using Hybrid Solid-State Materials

合作研究:使用混合固态材料用于水析氧的新型阳极催化剂

基本信息

  • 批准号:
    2311117
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The development of large-scale non-fossil sources of energy is arguably science and engineering's most important goal. The proposed project will address a key process for scaled use of sunlight, the electrocatalytic oxidation of water. Electrocatalysts are materials that make electrically-driven chemical reactions proceed faster, more efficiently, and/or with less input of electricity. This project will involve discovery of new catalytic materials for efficient electrochemical oxidation of water to produce hydrogen (H2) and oxygen (O2). The produced dihydrogen can be used directly as a fuel to produce electricity in hydrogen fuel cells or as a reactant to upgrade low-grade carbon-containing compounds to high-value fuels and chemicals. The project will address a critical step in a sustainable process for converting solar energy to chemical energy, thus alleviating dependence on fossil resources. A key aspect of this effort is to elucidate details and understanding of catalyst performance that would not be possible without the synergistic use of both experimental and computational interrogation.A major challenge for the scaled use of electrocatalytic processes for the use of green energy to produce hydrogen from water is the development of robust anodic materials that catalyze rapid and long-lived water oxidation. The proposed research is focused on the development of new carbon-supported materials to gain fundamental understanding of electrocatalytic water oxidation, especially with a focus on the ability to integrate well-defined molecular catalyst structures into conducting solid materials. Through a collaborative effort that involves groups in molecular catalysis (Gunnoe, Machan), nanomaterials (Zhang), theory and computational modeling (Goddard), carbon materials and catalyst characterization (Heumann), and benchmarking and mechanistic studies (Spanos) including in situ EPR spectroscopy (Schnegg), a strategy to develop and optimize molecular catalysts with ligand functionality to enhance electrocatalytic water oxidation, incorporate these molecular units into conducting carbon-based materials, and to study their efficacy and mechanism will be implemented. To achieve these goals, three objectives will be pursued: Objective 1. Increased understanding of the design of capping arene ligands to optimize performance of hybrid electrocatalysts, including multi-nuclear transition metal molecular precursors, for water oxidation based on Co or Fe metals. Objective 2. Develop design principles for pyridine-alkoxide ligands to optimize performance of hybrid electrocatalysts, with a focus on generating multi-nuclear transition metal molecular precursors, for the OER based on Cu and Co. Objective 3. Understand the impact of the carbon support on the activity and stability of the catalyst active site. Also, the project will also involve educational outreach to primarily undergraduate institutions (PUIs) to increase interest among students from diverse backgrounds in careers as scientists and engineers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模开发非化石能源可以说是科学和工程最重要的目标。拟议的项目将解决大规模利用阳光的关键过程,即水的电催化氧化。电催化剂是使电驱动的化学反应进行得更快、更有效和/或用更少的电力输入的材料。该项目将涉及发现新的催化材料,用于有效电化学氧化水以产生氢气(H2)和氧气(O2)。产生的氢气可以直接用作氢燃料电池中发电的燃料,或用作将低级含碳化合物升级为高价值燃料和化学品的反应物。该项目将解决将太阳能转化为化学能的可持续过程中的关键一步,从而减轻对化石资源的依赖。这项工作的一个关键方面是阐明催化剂性能的细节和理解,如果没有实验和计算询问的协同使用,这是不可能实现的。利用绿色能源从水中生产氢气的电催化过程的规模化应用的一个主要挑战是开发能够快速且长寿命催化水氧化的坚固阳极材料。拟议的研究重点是开发新型碳支撑材料,以获得对电催化水氧化的基本了解,特别是重点关注将明确的分子催化剂结构集成到导电固体材料中的能力。通过分子催化(Gunnoe、Machan)、纳米材料(Zhang)、理论和计算模型(Goddard)、碳材料和催化剂表征(Heumann)以及包括原位 EPR 光谱(Schnegg)在内的基准测试和机理研究(Spanos)等领域的合作,开发和优化具有配体功能的分子催化剂的策略 电催化水氧化,将这些分子单元整合到导电碳基材料中,并研究其功效和机制。为了实现这些目标,将追求三个目标: 目标 1. 加深对封端芳烃配体设计的理解,以优化混合电催化剂的性能,包括多核过渡金属分子前体,用于基于 Co 或 Fe 金属的水氧化。目标 2. 开发吡啶醇盐配体的设计原理,以优化混合电催化剂的性能,重点是为基于 Cu 和 Co 的 OER 生成多核过渡金属分子前体。 目标 3. 了解碳载体对催化剂活性位点活性和稳定性的影响。此外,该项目还将涉及主要针对本科院校 (PUI) 的教育推广,以提高来自不同背景的学生对科学家和工程师职业的兴趣。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Goddard其他文献

A context-based design process for future use cases of autonomous driving: prototyping AutoGym
针对未来自动驾驶用例的基于上下文的设计流程:AutoGym 原型设计
Playful Game Jams: Guidelines for Designed Outcomes
有趣的游戏 Jams:设计结果指南
Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration
回收法:用于地下盐水 CO2 封存的溶解无机碳的分子模拟
  • DOI:
    10.2172/1082428
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Goddard
  • 通讯作者:
    William Goddard
Interactive dome experiences: designing astrosurf
交互式穹顶体验:设计 astrosurf
Designing for social play in co-located mobile games
为同地移动游戏中的社交游戏进行设计

William Goddard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Goddard', 18)}}的其他基金

Collaborative Research: Modulating Single-Atom Catalytic Centers in Well-Defined Metal Oxide Nanocrystal Surfaces for Oxygen Evolution Reaction
合作研究:调节明确金属氧化物纳米晶体表面的单原子催化中心以进行析氧反应
  • 批准号:
    2005250
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
UNS:Nanoporous Platinum -- Atomistic Structure and Catalytic Properties Via Computational Simulations
UNS:纳米多孔铂——通过计算模拟的原子结构和催化性能
  • 批准号:
    1512759
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Multiscale Theory and Experiment in Search for and Synthesis of Novel Nanostructured Phases in BCN Systems
DMREF/合作研究:在 BCN 系统中寻找和合成新型纳米结构相的多尺度理论和实验
  • 批准号:
    1436985
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
EFRI-ODISSEI: Foldable Self-Replicating DNA Nanostructures for Organization of Functional Nanomaterials and 3D Meta-Material Assembly
EFRI-ODISSEI:用于组织功能纳米材料和 3D 超材料组装的可折叠自我复制 DNA 纳米结构
  • 批准号:
    1332411
  • 财政年份:
    2013
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
New Methods for Predicting Mechanisms for Complex Heterogeneous Catalysts with Applications to Metal Oxide Functionalization of Alkanes
预测复杂多相催化剂机理的新方法及其在烷烃金属氧化物官能化中的应用
  • 批准号:
    1214158
  • 财政年份:
    2012
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
SNM: Electronically Controlled Surface Assembly of DNA Nanostructures
SNM:DNA 纳米结构的电子控制表面组装
  • 批准号:
    1120890
  • 财政年份:
    2011
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Mechanisms and Rates for Improved Fuel Cell Cathode Catalysts and Supports from First Principles Based Methods
改进燃料电池阴极催化剂的机制和速率以及基于第一原理的方法的支持
  • 批准号:
    1067848
  • 财政年份:
    2011
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
EAGER: Ion Absorbing Microfiltration Membranes: A New Approach to Water Treatment and Desalination
EAGER:离子吸收微滤膜:水处理和海水淡化的新方法
  • 批准号:
    0948485
  • 财政年份:
    2009
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
First Principles Based Computational Framework to Study the Nano and Biomimetic Properties of Hydrogel Polymer Networks for Human Hyaline Cartilage Scaffold-Supported Cell Therapy
基于第一原理的计算框架研究用于人类透明软骨支架支持细胞治疗的水凝胶聚合物网络的纳米和仿生特性
  • 批准号:
    0727870
  • 财政年份:
    2007
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
ITR-ASE-Sim: Collaborative Research: De Novo Hierarchical Simulations of Stress Corrosion Cracking in Materials
ITR-ASE-Sim:协作研究:材料应力腐蚀裂纹的从头分层模拟
  • 批准号:
    0427177
  • 财政年份:
    2004
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了