Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
基本信息
- 批准号:2311598
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many advanced edge computing applications rely on large-scale data analysis for high-level decision making. Edge computing makes computing faster and more efficient because it takes place near the physical location of either the user or the data rather than sending all the information to the cloud. For example, augmented reality/virtual reality (AR/VR) applications utilize data from high-definition sensors (e.g., cameras, motion sensors, and microphones) to enable accurate and robust human-computer interactions. Drones and electric vehicles perform tracking, adjustments and obstacle recognition and avoidance via analyzing data at the level of the vehicle. However, the current ability to understand and manage various high-dimensional sensing data is obscured by significant knowledge and data gaps due to the heterogeneous edge device and environments, hindering the building of precise models for emerging edge computing applications using data analytics. One important trend in edge computing is utilizing artificial intelligence (AI) to extract complex knowledge from various sensor measurements for precise modeling. However, most edge devices have limited computing and memory resources, making it challenging to perform sophisticated data analytics using AI while satisfying the time requirements of most applications. Therefore, a heuristic data analytic framework is needed to enable efficient and robust edge event prediction using multi-model learning on resource-constrained edge devices. The goal of this project is developing transformative machine learning and data analytics technologies for enabling AI-based applications on resource-constrained edge computing devices (e.g., IoT devices, AR/VR headsets, and drones). The outcome of this project will advance data analytics and machine learning research of deriving and integrating various high-dimensional sensing data from diverse data sources and building robust predictive models for generic edge computing applications. This project addresses two major problems: 1) the gap between the data complexity and limited computing resources on edge devices and 2) the gap between the robust performance requirement and the multi-dimensional data and complex data modeling from heterogeneous edge devices and environments. The project develops an efficient and robust edge computing framework to provide correctness guarantees on heterogeneous edge computing hardware across different environments. In particular, deep neural network acceleration techniques are designed to enable fine-grained data analytics on resource-constrained commercial-off-the-shelf edge devices. Novel multivariate data analytic models are developed to characterize the unique features of the target event based on high-dimensional sensing data. Such models advance the usage of data science in generic edge sensing tasks that usually suffer from long training times, low prediction accuracy, and ineffective parameter selection. Additionally, the project addresses the challenges arising from the heterogeneity in devices and environments by developing environment-transferable features and models, which enable easy deployment of AI-enabled applications across devices and environments. The project seeks to integrate computer science research with graduate and undergraduate curricula and promote female engineering student involvement. The outcomes will be shared through conferences, journals, and website accessibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多先进的边缘计算应用程序依赖于大规模数据分析来进行高层决策。边缘计算使计算更快,更高效,因为它发生在用户或数据的物理位置附近,而不是将所有信息发送到云端。 例如,增强现实/虚拟现实(AR/VR)应用利用来自高清传感器的数据(例如,摄像机、运动传感器和麦克风),以实现准确和鲁棒的人机交互。无人机和电动汽车通过分析车辆层面的数据来执行跟踪、调整以及障碍物识别和规避。然而,由于边缘设备和环境的异构性,当前理解和管理各种高维传感数据的能力被显著的知识和数据差距所掩盖,阻碍了使用数据分析为新兴边缘计算应用构建精确模型。边缘计算的一个重要趋势是利用人工智能(AI)从各种传感器测量中提取复杂的知识,以进行精确建模。然而,大多数边缘设备的计算和内存资源有限,这使得使用AI执行复杂的数据分析同时满足大多数应用程序的时间要求变得非常具有挑战性。因此,需要一种启发式数据分析框架,以便在资源受限的边缘设备上使用多模型学习来实现高效且鲁棒的边缘事件预测。该项目的目标是开发变革性的机器学习和数据分析技术,以便在资源受限的边缘计算设备上实现基于AI的应用程序(例如,物联网设备、AR/VR耳机和无人机)。该项目的成果将推进数据分析和机器学习研究,从不同的数据源中获取和整合各种高维传感数据,并为通用边缘计算应用构建强大的预测模型。该项目解决了两个主要问题:1)数据复杂性与边缘设备上有限的计算资源之间的差距; 2)健壮的性能需求与来自异构边缘设备和环境的多维数据和复杂数据建模之间的差距。该项目开发了一个高效、健壮的边缘计算框架,为不同环境中的异构边缘计算硬件提供正确性保证。特别是,深度神经网络加速技术旨在实现资源受限的商业现成边缘设备上的细粒度数据分析。新的多元数据分析模型的开发,以表征的独特功能的目标事件的基础上,高维传感数据。这些模型推进了数据科学在一般边缘检测任务中的使用,这些任务通常受到训练时间长,预测精度低和参数选择无效的影响。此外,该项目还通过开发环境可转移的功能和模型来解决设备和环境异构性带来的挑战,这些功能和模型可以在设备和环境中轻松部署支持AI的应用程序。该项目力求将计算机科学研究与研究生和本科生课程结合起来,并促进工科女生的参与。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry Cheng其他文献
On Resiliency to Compromised Nodes : A Case for Location Based Security in Sensor Networks
关于受损节点的弹性:传感器网络中基于位置的安全案例
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hao Yang;F. Ye;Jerry Cheng;Haiyun Luo;Songwu Lu;Lixia Zhang - 通讯作者:
Lixia Zhang
Report on the Workshop “New Technologies in Stem Cell Research,” Society for Pediatric Research, San Francisco, California, April 29, 2006
“干细胞研究新技术”研讨会报告,儿科研究学会,加利福尼亚州旧金山,2006 年 4 月 29 日
- DOI:
10.1634/stemcells.2006-0397 - 发表时间:
2007 - 期刊:
- 影响因子:5.2
- 作者:
Jerry Cheng;E. Horwitz;S. Karsten;Lorelei D Shoemaker;Harley I. Kornblumc;P. Malik;K. Sakamoto - 通讯作者:
K. Sakamoto
In-hospital complications of bilateral salpingo-oophorectomy at benign hysterectomy: a population-based cohort study
良性子宫切除术中双侧输卵管卵巢切除术的院内并发症:基于人群的队列研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Jerry Cheng;Hung;K. Chu;Kung;N. Huang;Hsiao;Yiing - 通讯作者:
Yiing
In-hospital complications of vaginal versus laparoscopic-assisted benign hysterectomy among older women: a propensity score-matched cohort study
老年女性阴道与腹腔镜辅助良性子宫切除术的院内并发症:倾向评分匹配队列研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.7
- 作者:
Jerry Cheng;Hung;Sheng;Kung;N. Huang;Hsiao;Yiing - 通讯作者:
Yiing
Effects of age on emergency airway management
年龄对紧急气道管理的影响
- DOI:
10.22514/sv.2020.16.0109 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sho;Jerry Cheng;Wen;Hui - 通讯作者:
Hui
Jerry Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry Cheng', 18)}}的其他基金
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2120350 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028873 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1933017 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1954959 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1514224 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Towards Understanding Smartphone User Privacy: Implication, Derivation, and Protection
EAGER:协作研究:理解智能手机用户隐私:含义、推导和保护
- 批准号:
1449958 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant