Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network

合作研究:PPoSS:规划:硬件加速的可信深度神经网络

基本信息

  • 批准号:
    2028873
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Deep-learning approaches have recently achieved much higher accuracy than traditional machine-learning approaches in various applications (e.g., computer vision, virtual/augmented reality, and natural language processing). Existing research has shown that large-scale data from various sources with high-resolution sensing or large-volume data-collection capabilities can significantly improve the performance of deep-learning approaches. However, state-of-the-art hardware and software cannot provide sufficient computing capabilities and resources to ensure accurate deep-learning performance in a timely manner when using extremely large-scale data. This project develops a scalable and robust heterogeneous system that includes a new low-cost, secure, deep-learning hardware-accelerator architecture and a suite of large-data-compatible deep-learning algorithms. It allows deep learning to fully benefit from extremely large-scale data and facilitates efficient, low-latency applications in connected vehicles, real-time mobile applications, and timely precision health. The new technologies resulting from this project can enable more research opportunities to design new hardware accelerators for deep learning and obtain further optimization in computational complexity and reduction in power consumption. Moreover, by integrating the research results with the undergraduate and graduate curricula and outreach activities, this project has great impacts on education and training of researchers and engineers for computer architecture, security, theory and algorithms, and systems.This project designs trustworthy hardware accelerators optimized for large-scale deep-learning computations and models the complicated structure of large-scale datasets. More specifically, this project develops a novel hardware accelerator for deep learning that can achieve low power consumption. In addition, this project designs innovative in-memory encryption schemes to secure the neural models in deep-learning accelerators. Furthermore, data-modeling and statistical-learning algorithms are developed in this project to further reduce the computing cost of deep learning when processing extremely large-scale datasets. Finally, this project builds and evaluates a prototype of the proposed heterogeneous deep-learning system in terms of efficiency, scalability, and security in multiple application domains including mobile applications, connected vehicles and precision health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习方法最近在各种应用中实现了比传统机器学习方法高得多的准确性(例如,计算机视觉、虚拟/增强现实和自然语言处理)。现有的研究表明,来自各种来源的具有高分辨率传感或大容量数据收集能力的大规模数据可以显着提高深度学习方法的性能。然而,最先进的硬件和软件无法提供足够的计算能力和资源,以确保在使用超大规模数据时及时实现准确的深度学习性能。该项目开发了一个可扩展且强大的异构系统,包括一个新的低成本,安全的深度学习硬件加速器架构和一套大数据兼容的深度学习算法。它允许深度学习充分受益于超大规模数据,并促进互联车辆中的高效、低延迟应用、实时移动的应用和及时的精准健康。该项目产生的新技术可以为设计用于深度学习的新硬件加速器提供更多的研究机会,并进一步优化计算复杂度和降低功耗。此外,通过将研究成果与本科生和研究生课程以及推广活动相结合,该项目对计算机体系结构、安全、理论和算法以及系统的研究人员和工程师的教育和培训产生了重大影响。该项目设计了值得信赖的硬件加速器,为大规模深度学习计算进行了优化,并对大规模数据集的复杂结构进行了建模。更具体地说,该项目开发了一种用于深度学习的新型硬件加速器,可以实现低功耗。此外,该项目还设计了创新的内存加密方案,以保护深度学习加速器中的神经模型。此外,该项目还开发了数据建模和自动学习算法,以进一步降低深度学习在处理超大规模数据集时的计算成本。最后,该项目构建并评估了拟议的异构深度学习系统原型,在多个应用领域(包括移动的应用、联网车辆和精确健康)中的效率、可扩展性和安全性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave
WatchID: Wearable Device Authentication via Reprogrammable Vibration
WatchID:通过可重新编程的振动进行可穿戴设备身份验证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerry Cheng其他文献

On Resiliency to Compromised Nodes : A Case for Location Based Security in Sensor Networks
关于受损节点的弹性:传感器网络中基于位置的安全案例
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Yang;F. Ye;Jerry Cheng;Haiyun Luo;Songwu Lu;Lixia Zhang
  • 通讯作者:
    Lixia Zhang
Report on the Workshop “New Technologies in Stem Cell Research,” Society for Pediatric Research, San Francisco, California, April 29, 2006
“干细胞研究新技术”研讨会报告,儿科研究学会,加利福尼亚州旧金山,2006 年 4 月 29 日
  • DOI:
    10.1634/stemcells.2006-0397
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Jerry Cheng;E. Horwitz;S. Karsten;Lorelei D Shoemaker;Harley I. Kornblumc;P. Malik;K. Sakamoto
  • 通讯作者:
    K. Sakamoto
In-hospital complications of bilateral salpingo-oophorectomy at benign hysterectomy: a population-based cohort study
良性子宫切除术中双侧输卵管卵巢切除术的院内并发症:基于人群的队列研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jerry Cheng;Hung;K. Chu;Kung;N. Huang;Hsiao;Yiing
  • 通讯作者:
    Yiing
In-hospital complications of vaginal versus laparoscopic-assisted benign hysterectomy among older women: a propensity score-matched cohort study
老年女性阴道与腹腔镜辅助良性子宫切除术的院内并发症:倾向评分匹配队列研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jerry Cheng;Hung;Sheng;Kung;N. Huang;Hsiao;Yiing
  • 通讯作者:
    Yiing
Effects of age on emergency airway management
年龄对紧急气道管理的影响
  • DOI:
    10.22514/sv.2020.16.0109
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sho;Jerry Cheng;Wen;Hui
  • 通讯作者:
    Hui

Jerry Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerry Cheng', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120350
  • 财政年份:
    2021
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1933017
  • 财政年份:
    2019
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1954959
  • 财政年份:
    2019
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514224
  • 财政年份:
    2015
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Towards Understanding Smartphone User Privacy: Implication, Derivation, and Protection
EAGER:协作研究:理解智能手机用户隐私:含义、推导和保护
  • 批准号:
    1449958
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了