Elements: Development of cyberinfrastructure to establish a scalable application of self-supervised machine learning for over a decade of NOAA's water column sonar data

要素:开发网络基础设施,以建立可扩展的自监督机器学习应用程序,用于 NOAA 十多年来的水柱声纳数据

基本信息

  • 批准号:
    2311843
  • 负责人:
  • 金额:
    $ 59.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The health of the ocean is vital to economies throughout the world due to the global importance of ship traffic, commercial and recreational fisheries, tourism, and energy exploration and extraction. One technology that scientists use to understand and predict changes in the ocean is sonar, which allows them to ‘see’ into the ocean to observe its inhabitants and features such as ocean currents, sunken vessels, vents, and ocean bottom. By investigating the water column – the area of the ocean from the surface to the seafloor – using sonar technology, foundational information on the condition of the ocean ecosystems can be learned. Sonars produce vast amounts of data and much of it is interpreted by the trained eye of expert scientists. Unfortunately, modern sonar systems produce more data than scientists can interpret, and fast and accurate ways to extract information are needed. This project’s innovative approach efficiently processes decades of publicly available water column sonar data, which adds up to hundreds of terabytes. This project focuses on economically critical fisheries, and the results show how the patterns of fish schools and small swimming animals called zooplankton change over time and location. The project’s methods are being shared widely so scientists across the world can more easily use water column sonar in their research and interpretation is simplified since the results are directly comparable. The processing of existing data in new ways provides new information about ocean health, and rapid sharing of that information will lead to quicker answers for management decisions. These methods can also be applied to real-time sonar data collected on global fishing vessels and integrated into swarms of scientific ocean robots. When combined with other ocean data, the team can understand why the distribution of essential critters like zooplankton and fish changes, and how climate change can affect global fisheries. The project’s team is also training the next generation of scientists and engineers by using the information learned throughout the project in undergraduate courses for a diversity of students.Water column sonars provide foundational information on the condition of ocean ecosystems and inform marine resource conservation decisions. This project is developing the cyberinfrastructure (CI) required to apply self-supervised machine learning (SSL) to decades (and thus tens of terabytes) of water column sonar data to discover patterns that reflect the spatio-temporal physical and biological structure of aquatic environments. The SSL model is built using multi-frequency echosounder data collected from 1998 to 2022 by the NOAA Northeast Fisheries Science Center. These data are archived at the NOAA National Centers for Environmental Information and accessible as analysis-ready zarr stores on Amazon Web Services. This effort explores different scales of data in different regions of the Northwest Atlantic, evaluates the latency of pattern analysis, and validates the accuracy of the patterns found with domain experts. The project will deliver a CI proof of concept for a new, self-learning, and extensible method to classify acoustic signal patterns from large volumes of data. In combination with climate indicators, it enables advanced understanding of how the distribution of ecosystem essential critters like zooplankton and fish have been changing over time and space, and why.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the NSF Division of Biological Infrastructure (BIO/DBI).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于船舶交通、商业和休闲渔业、旅游业以及能源勘探和开采的全球重要性,海洋的健康对世界各地的经济都至关重要。科学家用来了解和预测海洋变化的一项技术是声纳,它使他们能够深入海洋,观察海洋中的居民和特征,如洋流、沉船、喷口和海底。通过使用声纳技术调查水柱--从海洋表面到海底的面积--,可以了解有关海洋生态系统状况的基本信息。声纳产生了大量的数据,其中大部分是由训练有素的专家科学家的眼睛来解释的。不幸的是,现代声纳系统产生的数据超过了科学家的解释能力,需要快速而准确的方法来提取信息。该项目的创新方法有效地处理了数十年公开可用的水柱声纳数据,这些数据总计达数百TB。该项目的重点是对经济至关重要的渔业,结果显示了鱼群和称为浮游动物的小型游动动物的模式是如何随着时间和地点的变化而变化的。该项目的方法正在被广泛分享,因此世界各地的科学家可以更容易地在他们的研究中使用水柱声纳,而且由于结果直接具有可比性,解释也得到了简化。以新的方式处理现有数据提供了有关海洋健康的新信息,这些信息的快速共享将导致对管理决策的更快答复。这些方法也可以应用于在全球渔船上收集的实时声纳数据,并集成到成群的科学海洋机器人中。当结合其他海洋数据时,该团队可以理解浮游动物和鱼类等重要生物的分布为什么会发生变化,以及气候变化如何影响全球渔业。该项目的团队还在为不同的学生利用整个项目在本科课程中学到的信息来培训下一代科学家和工程师。水柱声纳提供关于海洋生态系统状况的基本信息,并为海洋资源保护决策提供信息。该项目正在开发所需的网络基础设施,以便将自我监督机器学习(SSL)应用于数十年(从而数十TB)的水柱声纳数据,以发现反映水环境时空物理和生物结构的模式。SSL模型是使用NOAA东北水产科学中心从1998年到2022年收集的多频回声测深仪数据建立的。这些数据存档在NOAA国家环境信息中心,并可作为分析就绪的Zarr商店在亚马逊网络服务上访问。这项工作探索了西北大西洋不同区域的不同规模的数据,评估了模式分析的延迟,并验证了与领域专家发现的模式的准确性。该项目将为一种新的、自学习和可扩展的方法提供CI概念证明,以从大量数据中对声音信号模式进行分类。与气候指标相结合,它使人们能够更深入地了解浮游动物和鱼类等生态系统基本生物的分布是如何随时间和空间变化的,以及为什么会发生变化。这项由NSF高级数字基础设施办公室颁发的奖项由NSF生物基础设施部门(BIO/DBI)联合支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carrie Bell其他文献

Preliminary clinical assessment of a task‐shifting device for subcutaneous contraceptive implants
皮下植入避孕药任务转移装置的初步临床评估
Assessing the Usability of a Task-Shifting Device for Inserting Subcutaneous Contraceptive Implants for Use in Low-Income Countries
评估用于插入皮下避孕植入物的任务转移装置在低收入国家的可用性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Jiang;I. Mohedas;G. A. Biks;Mulat Adefris;Takele Tadesse Adafrie;Betregiorgis Hailu Zegeye;Z. Abebe;Ajay Kolli;Annabel Weiner;J. R. Davila;Biruk Mengstu;Carrie Bell;K. Sienko
  • 通讯作者:
    K. Sienko
Assistive Device for the Insertion of Subcutaneous Contraceptive Implants
用于插入皮下避孕植入物的辅助装置
  • DOI:
    10.1115/1.4030220
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    I. Mohedas;A. S. Sarvestani;Corey Bertch;Anthony Franklin;Adam Joyce;J. McCormick;Michael Shoemaker;Carrie Bell;T. M. Johnson;Dilayehu Bekele;S. Fisseha;K. Sienko
  • 通讯作者:
    K. Sienko

Carrie Bell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311875
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Broadening Adoption of Cyberinfrastructure and Research Workforce Development for Disaster Management
协作研究:网络培训:实施:小型:扩大网络基础设施的采用和灾害管理研究队伍的发展
  • 批准号:
    2321069
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Broadening Adoption of Cyberinfrastructure and Research Workforce Development for Disaster Management
协作研究:网络培训:实施:小型:扩大网络基础设施的采用和灾害管理研究队伍的发展
  • 批准号:
    2321070
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311877
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2330364
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2344717
  • 财政年份:
    2023
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2230098
  • 财政年份:
    2022
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2306184
  • 财政年份:
    2022
  • 资助金额:
    $ 59.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了