CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
基本信息
- 批准号:2317145
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Teams of humans are exceptionally good at coordination. Teams of robots, however, are extremely clumsy at coordination, requiring extensive communication and computation. Reliance on this infrastructure poses a significant roadblock to bringing robot teams into real-world applications. This project is pursuing an integrated research, education, and outreach approach for developing novel, data-driven algorithms for multi-robot coordination, inspired by human coordination. As cognitive beings that make decisions based on broad context, memory, and sensing, human capabilities are challenging to transfer to robotics. To facilitate this transfer, the project is developing an online crowdsourcing application that tasks participants with creating a global structure, such as a shape. The application constrains participants to robot-like capabilities by limiting available information and actions. The application will provide a faithful representation of the capabilities of distributed teams of robots, and will be used to gain insights into human coordination that can then be transferred to a multi-robot system.The overarching goal of the proposed work is to develop novel methodologies for multi robot coordination firmly grounded in human collaboration, based on models learned from data collected via a crowdsourced online application. To this end, the research objectives are (1) to explicate the relationship between context (communication and sensing) and outcomes in distributed teams of humans working on tightly coupled tasks using data generated from an online multi-person interface; (2) to identify, using statistical methods, parameters for distributed teams of robots solving similar shared objective problems; (3) to infer, using deep learning architectures, diverse ensembles of coordination models for distributed teams of robots solving tightly coupled problems using the data collected from the crowdsourcing application; and (4) to validate these models by evaluating their success in solving tightly coupled problems using a combination of simulation, hardware, and mixed reality experiments.
人类团队非常擅长协调。然而,机器人团队在协调方面极其笨拙,需要广泛的沟通和计算。对这一基础设施的依赖对将机器人团队带入现实世界的应用构成了重大障碍。该项目正在寻求一种综合的研究、教育和推广方法,以开发受人类协调启发的新颖的、数据驱动的多机器人协调算法。作为根据广泛的背景、记忆和感知做出决定的认知存在,人类的能力很难转移到机器人上。为了促进这种转移,该项目正在开发一个在线众包应用程序,任务是让参与者创建一个全球结构,如形状。该应用程序通过限制可用的信息和操作,将参与者限制在类似机器人的能力范围内。该应用程序将提供分布式机器人团队的能力的真实表示,并将用于深入了解人类协调,然后将其转移到多机器人系统。拟议工作的总体目标是开发牢固基于人类协作的新方法,基于从众包在线应用程序收集的数据中学习的模型。为此,研究目标是(1)使用从在线多人界面产生的数据来阐明在处理紧耦合任务的分布式人类团队中情境(交流和感知)与结果之间的关系;(2)使用统计方法来确定用于解决类似共享目标问题的分布式机器人团队的参数;(3)使用深度学习体系结构来推断用于分布式机器人团队解决紧耦合问题的不同的协调模型集合;以及(4)通过结合模拟、硬件和混合现实实验来评估这些模型在解决紧耦合问题方面的成功,从而验证这些模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nora Ayanian其他文献
STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS
XBOTS 自组装的随机控制
- DOI:
10.1115/detc2008-49535 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Nora Ayanian;Paul J. White;Mark H. Yim;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Guest editorial: special issue on multi-robot and multi-agent systems
- DOI:
10.1007/s10514-020-09908-x - 发表时间:
2020-02-19 - 期刊:
- 影响因子:4.300
- 作者:
Nora Ayanian;Paolo Robuffo Giordano;Robert Fitch;Antonio Franchi;Lorenzo Sabattini - 通讯作者:
Lorenzo Sabattini
STA-RLHF: Stackelberg Aligned Reinforcement Learning with Human Feedback
STA-RLHF:Stackelberg 将强化学习与人类反馈结合起来
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jacob Makar;Arjun Prakash;†. DenizalpGoktas;Nora Ayanian;†. AmyGreenwald - 通讯作者:
†. AmyGreenwald
Automatic Optimal Multi-Agent Path Finding Algorithm Selector (Student Abstract)
自动最优多智能体路径寻找算法选择器(学生摘要)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Ren;V. Sathiyanarayanan;Eric Ewing;Baskin Senbaslar;Nora Ayanian - 通讯作者:
Nora Ayanian
DART: Diversity-enhanced Autonomy in Robot Teams
- DOI:
10.1177/0278364919839137 - 发表时间:
2019-03 - 期刊:
- 影响因子:0
- 作者:
Nora Ayanian - 通讯作者:
Nora Ayanian
Nora Ayanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nora Ayanian', 18)}}的其他基金
Expediting Solutions to Hard Multi-Robot Path Finding Instances
加速硬多机器人路径查找实例的解决方案
- 批准号:
2330942 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
1724399 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
REU Site: Robotics and Autonomous Systems
REU 网站:机器人和自主系统
- 批准号:
1659838 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
- 批准号:
1553726 - 财政年份:2016
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似海外基金
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Projects
InclusivAI - fostering equitable AI systems through engaged, educated crowdsourcing
InclusivAI - 通过参与、受过教育的众包培育公平的人工智能系统
- 批准号:
10076297 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Grant for R&D
Crowdsourcing for adolescent health: development and evaluation of a tool to collect data on the state and determinants of adolescent physical health
青少年健康众包:开发和评估收集青少年身体健康状况和决定因素数据的工具
- 批准号:
MR/X029050/1 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant
Proactive Safety Improvement via crowdsourcing Live Curve Safety Assessment
通过众包实时曲线安全评估主动改进安全
- 批准号:
2306684 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
CRII: SaTC: Toward Secure, Privacy-Preserving, and Efficient Crowdsourcing Systems
CRII:SaTC:迈向安全、隐私保护和高效的众包系统
- 批准号:
2246143 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Customizable Geo-Obfuscation to Protect Users' Location Privacy in Mobile Crowdsourcing
SaTC:核心:小型:可定制的地理混淆以保护移动众包中用户的位置隐私
- 批准号:
2313866 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Crowdsourcing for adolescent health: development and evaluation of a tool to collect data on the state and determinants of adolescent physical health
青少年健康众包:开发和评估收集青少年身体健康状况和决定因素数据的工具
- 批准号:
MR/X029050/2 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant
Learning Reliable Deep Models from Noise Labels by Crowdsourcing
通过众包从噪声标签中学习可靠的深度模型
- 批准号:
23H03402 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BRC-BIO: Optimizing Snake Identification by Understanding the Interplay of Computer Vision, Crowdsourcing, and Expert Verification
BRC-BIO:通过了解计算机视觉、众包和专家验证的相互作用来优化蛇识别
- 批准号:
2313356 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Real-time bridge performance evaluation based on crowdsourcing and learning
基于众包和学习的桥梁性能实时评估
- 批准号:
DP230100806 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Projects