Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
基本信息
- 批准号:2312227
- 负责人:
- 金额:$ 34.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is motivated by the need to efficiently execute complex queries on massive databases in a way that minimizes the use of communication resources while preserving the privacy of the entity that initiated the query. Such queries are functions of the data points that are stored at remote servers; for example, bi-linear operations are widely used fundamental primitives for building the complex queries that support on-line big-data analytics and data mining procedures. In scenarios such as mobile-edge computing, it is too resource-consuming to download locally all the input variables in order to compute the desired output value. Instead, it is desirable to directly download the result of the desired output function, which should also be kept private. This project develops a principled and holistic framework for the problem of privately retrieving, at distributed cache-aided nodes, the output of functions based on both data that is locally computed and data that is received from multiple servers. This problem is at the intersection of areas that individually have received significant attention lately, namely, distributed coded caching and private information retrieval. This project aims to significantly advance the state-of-the-art of private function retrieval in distributed settings from both an information theory and an algorithm design perspective, thus establishing a foundation of private caching, computing and communication. The project also features a rich educational component. The novel findings from this project will be incorporated into the education offerings, in both undergraduate and graduate levels, at the three collaborating institutions. The project objectives are organized in three main research thrusts: (1) design optimal coded caching schemes for user-private function retrieval; (2) motivated by distributed settings in which a user may also be a sender, devise optimal server-private function retrieval strategies; and (3) overcome complexity bottlenecks in practical distributed computing systems with server- and/or user-privacy. The designed codes and algorithms will be implemented on Amazon EC2 and POWDER (5G platform) to provide a proof-of-concept that the proposed solutions have a practical impact at scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的动机是需要有效地执行复杂的查询,在大规模的数据库的方式,最大限度地减少使用的通信资源,同时保护发起查询的实体的隐私。这样的查询是存储在远程服务器上的数据点的函数;例如,双线性操作是用于构建支持在线大数据分析和数据挖掘过程的复杂查询的广泛使用的基本原语。在移动边缘计算等场景中,为了计算所需的输出值而在本地下载所有输入变量太消耗资源。相反,希望直接下载所需输出函数的结果,这也应该保持私有。该项目开发了一个原则性和整体性的框架,用于在分布式缓存辅助节点上私下检索基于本地计算的数据和从多个服务器接收的数据的函数输出的问题。这个问题是在交叉点的领域,个别已收到显着的关注,最近,即分布式编码缓存和私人信息检索。该项目旨在从信息理论和算法设计的角度显着推进分布式环境中私有函数检索的最新技术,从而建立私有缓存,计算和通信的基础。该项目还具有丰富的教育内容。该项目的新发现将被纳入三个合作机构的本科和研究生教育课程。该项目的目标是组织在三个主要的研究方向:(1)设计最佳的编码缓存计划,用户私有功能检索;(2)由分布式设置,其中用户也可能是一个发送者的动机,设计最佳的服务器私有功能检索策略;(3)克服复杂性瓶颈,在实际的分布式计算系统与服务器和/或用户隐私。设计的代码和算法将在Amazon EC2和POWDER(5G平台)上实现,以提供概念验证,证明所提出的解决方案具有大规模的实际影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyue Ji其他文献
Growth competition between columnar dendrite and degenerate seaweed during directional solidification of alloys: Insights from multi-phase field simulations
合金定向凝固过程中柱状枝晶和简并海藻之间的生长竞争:来自多相场模拟的见解
- DOI:
10.1016/j.matdes.2019.108250 - 发表时间:
2020-01 - 期刊:
- 影响因子:8.4
- 作者:
Hui Xing;Mingyue Ji;Xianglei Dong;Yumin Wang;Limin Zhang;Shuangming Li - 通讯作者:
Shuangming Li
Network pharmacology-based screening of the active ingredients and mechanisms of emCymbaria daurica/em against diabetes mellitus
基于网络药理学的沙棘对糖尿病活性成分及作用机制的筛选
- DOI:
10.1016/j.fshw.2023.03.022 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:7.400
- 作者:
Ruyu Shi;Dongxue Chen;Mingyue Ji;Baochang Zhou;Ziyan Zhang;Chunhong Zhang;Minhui Li - 通讯作者:
Minhui Li
The Capacity Region of Information Theoretic Secure Aggregation with Uncoded Groupwise Keys
非编码分组密钥信息论安全聚合的容量域
- DOI:
10.48550/arxiv.2310.09889 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kai Wan;Hua Sun;Mingyue Ji;Tiebin Mi;Giuseppe Caire - 通讯作者:
Giuseppe Caire
HawkRover: An Autonomous mmWave Vehicular Communication Testbed with Multi-sensor Fusion and Deep Learning
HawkRover:具有多传感器融合和深度学习的自主毫米波车辆通信测试台
- DOI:
10.48550/arxiv.2401.01822 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ethan Zhu;Haijian Sun;Mingyue Ji - 通讯作者:
Mingyue Ji
Novel outer bounds for combination networks with end-user-caches
具有最终用户缓存的组合网络的新颖外部边界
- DOI:
10.1109/itw.2017.8277986 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kai Wan;Mingyue Ji;P. Piantanida;Daniela Tuninetti - 通讯作者:
Daniela Tuninetti
Mingyue Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyue Ji', 18)}}的其他基金
Collaborative Research: SWIFT: Decentralized Intelligent Spectrum Sharing in UAV Networks (DISH-uNET) via Hardware-software Co-design
合作研究:SWIFT:通过软硬件协同设计实现无人机网络中的去中心化智能频谱共享 (DISH-uNET)
- 批准号:
2229562 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
CAREER: Heterogeneous Elastic Computing over the Cloud - from Theory to Practice
职业:云上的异构弹性计算 - 从理论到实践
- 批准号:
2145835 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
Continuing Grant
CIF: Small: Fundamental Limits of Caching Networks with General Topologies
CIF:小:具有一般拓扑的缓存网络的基本限制
- 批准号:
1817154 - 财政年份:2018
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant