Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites

合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果

基本信息

  • 批准号:
    2312325
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY: From lightweight materials to flexible solar panels, the materials opening the door to tomorrow’s technologies frequently exhibit “nanostructure”: they are comprised of two finely intermixed domains only hundreds to thousands of atoms across. In many cases, one of these domains consists of polymers, which are long chains of molecules that plastics, rubber, and many biological materials are made of. In parallel, the second domain often consists of tiny inorganic nanoparticles – rigid regions that can dramatically enhance the polymers’ properties. Over the past decade, scientists have found evidence that something strange happens at the interfaces between these domains: the polymer molecules become tightly ‘glued’ to the particles at the molecular level. This process, known as “irreversible adsorption”, seems to dramatically alter these materials’ properties, with the potential to imbue tolerance of higher temperatures, to alter permeability, and perhaps to enhance mechanical strength. However, the cause of this effect – or even why it should occur at all – remains unknown. Even more practically, there is little understanding of how to control this irreversible adsorption phenomenon in order to obtain the best possible properties for next-generation materials. This collaborative project (co-supported by the Polymers Program and the Condensed Matter and Materials Theory Program in the Division of Materials Research) will combine experiments and computer simulations to understand why this adsorption effect occurs and how scientists and engineers can control it to optimize material properties. Experiments will employ a nanoscale characterization method wherein fluorescent probe molecules, localized to the nanoscale domain near the interface, report on the properties of the adsorbed layer and how it forms. Molecular simulations performed on supercomputers will zoom in to the molecular scale to understand how molecules move and evolve during irreversible adsorption, making it possible to link changes in material properties with underlying causes in molecular structure and motion. Together, these approaches aim to provide the fundamental scientific understanding needed to enable more rational engineering and design of these materials, with relevance to economic sectors ranging from infrastructure to energy. This research will be coupled with a new high-school internship program that will support broadening the pipeline of students moving into STEM professions.TECHNICAL SUMMARY: In polymer films and nanocomposites, the formation of an irreversibly adsorbed layer from the polymer melt can dramatically alter the properties of the interfacial domains that dominate the overall properties of these materials. Unlike in polymer adsorption from solution, which is driven by a combination of an energetic mismatch and an entropic size asymmetry between solvent and polymer, the thermodynamic mechanism of adsorption from the melt (where these factors are absent) remains unresolved. Moreover, numerous properties are reported to co-evolve during adsorption, challenging the development of a theory of adsorption accounting for all of them. A central challenge has been the difficulty of probing the evolution of near-substrate and near-particle properties in a temporally and spatially resolved manner during adsorbed layer formation. To overcome these challenges, this work will employ fluorescence experiments to locally probe the evolution of multiple properties near substrates and particles during adsorption. These experiments will be combined with molecular dynamics simulations that will provide spatially resolved insight into how segmental packing, chain conformations, and polymer dynamics co-evolve during adsorbed layer formation. Synergistic experiments and simulations will take an integrated approach to systematically probe the layer formation process, the behavior of isolated adsorbed layers, and the ultimate impact of the adsorbed layer presence on material properties, all across a matrix of key controlling variables. This strategy will establish an understanding of how multiple mechanisms may interact to drive adsorbed layer formation and mediate its impact on polymer properties..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:从轻质材料到柔性太阳能电池板,为未来技术打开大门的材料经常表现出“纳米结构”:它们由两个精细混合的域组成,只有数百到数千个原子。在许多情况下,这些领域之一由聚合物组成,聚合物是塑料,橡胶和许多生物材料的长链分子。同时,第二个区域通常由微小的无机纳米颗粒组成-刚性区域可以显着提高聚合物的性能。在过去的十年里,科学家们发现了一些奇怪的证据,这些领域之间的界面发生了一些奇怪的事情:聚合物分子在分子水平上紧紧地“粘”在颗粒上。这个过程被称为“不可逆吸附”,似乎会极大地改变这些材料的特性,有可能赋予更高温度的耐受性,改变渗透性,并可能提高机械强度。然而,这种效应的原因-甚至为什么会发生-仍然未知。更实际的是,人们对如何控制这种不可逆的吸附现象以获得下一代材料的最佳性能几乎一无所知。这个合作项目(由材料研究部的聚合物计划和凝聚态物质与材料理论计划共同支持)将结合联合收割机实验和计算机模拟,以了解为什么会发生这种吸附效应,以及科学家和工程师如何控制它以优化材料性能。实验将采用纳米级表征方法,其中荧光探针分子,定位到界面附近的纳米级域,报告吸附层的性质及其如何形成。在超级计算机上进行的分子模拟将放大到分子尺度,以了解分子在不可逆吸附过程中如何移动和演变,从而有可能将材料特性的变化与分子结构和运动的根本原因联系起来。总之,这些方法旨在提供所需的基本科学理解,以使这些材料的工程和设计更加合理,与从基础设施到能源的经济部门有关。这项研究将与一项新的高中实习计划相结合,该计划将支持拓宽学生进入STEM专业的管道。技术总结:在聚合物薄膜和纳米复合材料中,聚合物熔体形成的不可逆吸附层可以显著改变主导这些材料整体性能的界面区域的性能。与溶液中的聚合物吸附不同,溶液中的聚合物吸附是由溶剂和聚合物之间的能量失配和熵尺寸不对称性的组合驱动的,从熔体中吸附的热力学机制(其中这些因素不存在)仍然没有得到解决。此外,许多属性据报道在吸附过程中共同演变,挑战的发展,吸附理论占所有这些。一个核心的挑战是在吸附层形成过程中,以时间和空间分辨的方式探测近衬底和近粒子特性的演变的困难。为了克服这些挑战,这项工作将采用荧光实验来局部探测吸附过程中基板和颗粒附近的多种性质的演变。这些实验将结合分子动力学模拟,将提供空间分辨的洞察如何节段包装,链构象,和聚合物动力学共同发展过程中吸附层的形成。协同实验和模拟将采取综合的方法来系统地探测层的形成过程,孤立的吸附层的行为,以及吸附层存在对材料性能的最终影响,所有这些都是关键控制变量的矩阵。该策略将建立对多种机制如何相互作用以驱动吸附层形成并介导其对聚合物性质的影响的理解。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodney Priestley其他文献

Rodney Priestley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodney Priestley', 18)}}的其他基金

Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208260
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF I-Corps Hub: Northeast Region
NSF I-Corps 中心:东北地区
  • 批准号:
    2048602
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
PFI-TT: Production and Formulation of Janus Colloids for Personal and Healthcare Applications.
PFI-TT:用于个人和医疗保健应用的 Janus 胶体的生产和配制。
  • 批准号:
    1827506
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic understanding and control of soft interfacial nanorheology from molecular simulations and nanoresolved experiments
合作研究:从分子模拟和纳米分辨率实验对软界面纳米流变学的机理理解和控制
  • 批准号:
    1706012
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Materials for Energy and the Environment
REU 网站:能源与环境材料
  • 批准号:
    1559973
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Request for Travel Support for Domestic Invited Speakers to Attend the "Emerging Areas in Polymer Science and Engineering" Program at the 2013 American Institute of Chemical Engine
请求国内特邀演讲者参加2013年美国化学发动机学会“高分子科学与工程新兴领域”项目旅费资助
  • 批准号:
    1346395
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Formation of Stable Polymer Glasses
职业:稳定聚合物玻璃的形成
  • 批准号:
    1053144
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: Synthesis and Design of Novel Supramolecular Polymers and Rubbers by Environmentally Benign Methods
国际研究奖学金计划:采用环保方法合成和设计新型超分子聚合物和橡胶
  • 批准号:
    0754448
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0611823
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship

相似国自然基金

面向城市全景式无人环卫装备及协同作业系统研究及应用示范
  • 批准号:
    2025JK2039
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多储能耦合系统集成协控技术及示范应用研究
  • 批准号:
    2025C01149
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于中法标准协同的北非地区智能建造集成应用技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
分布式电驱动智能底盘集成与控制方法研究
  • 批准号:
    JCZRLH202500923
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向集成电路散热的超薄均热板热质输运协同强化机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
宽温域环境HEV系统集成优化与能量管理协同控制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
“十五五”期间构建湖北省“大科技”格 局和科技统筹机制体系的路径和对策研究
  • 批准号:
    RKX202400238
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多辅助服务场景下梯次利用电池储能电站集成与协同控制研究
  • 批准号:
    52377117
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
面向变温高湿呼吸检测的集成传感器协同传感机理与关键技术研究
  • 批准号:
    62304023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柴油车集成式排气后处理系统智能监测与协同优化控制研究
  • 批准号:
    2023JJ10043
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了