Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes

合作研究:锂氧电池正极固-固界面化学工程

基本信息

项目摘要

Lithium-oxygen batteries potentially could have energy storage capacities that rival gasoline fuel, but there remains much fundamental scientific knowledge to learn about these batteries before the technology can be commercialized. In particular, some of the chemical products formed during the operation of the batteries can slowly degrade and poison the materials, leading to performance losses over extended periods of operation. This research project seeks to overcome these problems by exploring a class of inexpensive, mixed metal oxide electrocatalysts that may alter the chemistry of lithium-oxygen batteries. This project aims to develop a framework to engineer the chemistry of lithium-oxygen batteries, which are a potential next-generation energy storage device, and to improve their performance. The studies combine advanced characterization methods and theoretical calculations to determine how the properties of the oxide surfaces influence the products that are produced on lithium-oxygen electrodes. These insights will be leveraged to develop design principles that will aide in identifying oxide electrocatalysts that improve battery cell performance. The researchers involved in this project will partner with local K-12 schools to involve economically disadvantaged students with the proposed research through summer internships and student exchanges. They aim to inspire the students to pursue careers in science and engineering. A fundamental understanding of the reactions occurring at solid-solid interfaces is critical for the development of next-generation energy storage devices, such as lithium-oxygen batteries. Lithium-oxygen batteries have attracted significant interest in recent years due to their exceptionally high theoretical energy density. If even 15% of this energy density is achieved, then it would equal the value of gasoline, making lithium-oxygen batteries with driving ranges of up to 500 miles per charge commercially viable. While this technology is very attractive, numerous technical challenges need to be overcome before its widespread adoption is possible. Some of these challenges include: (i) insolubility of the solid discharge reaction products, leading to clogging of the cathode and eventually resulting battery cell death; (ii) low roundtrip (discharge-charge cycle) efficiency due to high charge overpotentials to dissociate the main discharge reaction product, lithium peroxide; and (iii) instability of electrolytes at high overpotentials. This research project seeks to alleviate these issues by designing solid-solid interfaces at the cathode of lithium-oxygen batteries that selectively stabilize lithium-deficient discharge products that are not insulating and can be dissociated at reasonable overpotentials. The researchers will apply a combined experimental and theoretical approach to study the chemistry at these solid-solid interfaces with the aim of designing materials that can selectivity tune the discharge product distribution such that it leads to improved battery performance. In particular, the work will involve a combination of advanced characterization studies and theoretical calculations to determine how the elemental composition, electronic properties, and symmetry of the oxide surface influence the discharge product distribution in lithium-oxygen cathodes. The studies will elucidate the effect of the global oxide crystal structure on the discharge product formation and lead to the development of design principles for identifying oxide electrocatalysts that are highly selective towards the formation of lithium-deficient oxide discharge products and therefore exhibit low charge overpotentials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂氧电池可能具有与汽油燃料相媲美的储能能力,但在该技术商业化之前,仍有许多基础科学知识需要了解。特别是,在电池运行期间形成的一些化学产品会慢慢降解和毒化材料,导致长时间运行时的性能损失。这项研究项目试图通过探索一种廉价的混合金属氧化物电催化剂来克服这些问题,这种催化剂可能会改变锂氧电池的化学结构。该项目旨在开发一种框架来设计锂氧电池的化学结构,并提高其性能。锂氧电池是一种潜在的下一代储能设备。这些研究结合了先进的表征方法和理论计算,以确定氧化物表面的性质如何影响锂氧电极上产生的产品。这些洞察力将被用来开发设计原则,帮助识别提高电池性能的氧化物电催化剂。参与该项目的研究人员将与当地K-12学校合作,通过暑期实习和学生交流,让经济困难的学生参与拟议的研究。他们的目标是激励学生在科学和工程领域追求职业生涯。对固体-固体界面上发生的反应有一个基本的了解,这对于开发下一代储能设备,如锂氧电池至关重要。近年来,锂氧电池因其极高的理论能量密度而引起了人们的极大兴趣。如果达到这种能量密度的15%,就相当于汽油的价值,这将使每次充电续航里程高达500英里的锂氧电池在商业上可行。虽然这项技术非常有吸引力,但在它得到广泛采用之前,需要克服许多技术挑战。其中一些挑战包括:(I)固体放电反应产物的不溶性,导致阴极堵塞,最终导致电池死亡;(Ii)由于高充电过电位而导致的往返(放电-充电循环)效率低,以解离主要放电反应产物过氧化锂;以及(Iii)高过电位下电解液的不稳定。本研究项目旨在通过在锂氧电池的正极设计固体-固体界面来缓解这些问题,该界面可以选择性地稳定不绝缘且可以在合理的过电位下解离的缺锂放电产品。研究人员将采用实验和理论相结合的方法来研究这些固体-固体界面的化学成分,目的是设计能够选择性地调整放电产物分布的材料,从而提高电池性能。特别是,这项工作将涉及先进的表征研究和理论计算相结合,以确定元素组成、电子性质和氧化物表面的对称性如何影响锂氧阴极中的放电产物分布。这些研究将阐明全球氧化物晶体结构对放电产品形成的影响,并导致开发设计原则来识别氧化物电催化剂,这些氧化物电催化剂对形成缺锂氧化物放电产品具有高度选择性,因此显示出低充电过电位。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of the Mechanism of Discharge Product Formation on the Electrochemical Performance and Cyclability of Aprotic Na–O 2 Batteries
放电产物形成机制对非质子Na−O 2 电池电化学性能和循环性能的影响
  • DOI:
    10.1021/acsenergylett.3c01664
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Velinkar, Kunal Kalpesh;Gunten, Alex Von;Greeley, Jeffrey;Nikolla, Eranda
  • 通讯作者:
    Nikolla, Eranda
Elucidation of Parasitic Reaction Mechanisms at Interfaces in Na–O 2 Batteries
Na-O 2 电池界面寄生反应机制的阐明
  • DOI:
    10.1021/acs.chemmater.3c00850
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Von Gunten, Alex;Velinkar, Kunal;Nikolla, Eranda;Greeley, Jeffrey
  • 通讯作者:
    Greeley, Jeffrey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eranda Nikolla其他文献

Realizing synergy between Cu, Ga, and Zr for selective COsub2/sub hydrogenation to methanol
实现铜、镓和锆之间的协同作用,用于二氧化碳选择性加氢制甲醇
  • DOI:
    10.1016/j.apcatb.2024.124198
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Abdullah J. Al Abdulghani;Edgar E. Turizo-Pinilla;Maria J. Fabregas-Angulo;Ryan H. Hagmann;Faysal Ibrahim;Jacob H. Jansen;Theodore O. Agbi;Samiha Bhat;Miguel Sepúlveda-Pagán;Morgan O. Kraimer;Collin M. Queen;Zhuoran Sun;Eranda Nikolla;Yomaira J. Pagán-Torres;Ive Hermans
  • 通讯作者:
    Ive Hermans
Strategies for Designing the Catalytic Environment Beyond the Active site of Heterogeneous Supported Metal Catalysts
  • DOI:
    10.1007/s11244-023-01835-2
  • 发表时间:
    2023-06-12
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Samiha Bhat;Yomaira J. Pagán-Torres;Eranda Nikolla
  • 通讯作者:
    Eranda Nikolla

Eranda Nikolla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eranda Nikolla', 18)}}的其他基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Continuing Grant
Conference: Support for U.S. Participants at the 18th International Congress on Catalysis
会议:为第 18 届国际催化大会美国与会者提供支持
  • 批准号:
    2419211
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Engineering Selectivity by Catalyst Architecture Control
合作研究:通过催化剂结构控制实现工程选择性
  • 批准号:
    2321164
  • 财政年份:
    2023
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2306125
  • 财政年份:
    2022
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2116647
  • 财政年份:
    2021
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
  • 批准号:
    1935581
  • 财政年份:
    2020
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Support for U.S. Participants at the 17th International Congress on Catalysis
对第 17 届国际催化大会美国与会者的支持
  • 批准号:
    2003430
  • 财政年份:
    2020
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: Understanding and Scaffolding the Productive Beginnings of Engineering Judgment in Undergraduate Students
合作研究:研究:理解和支撑本科生工程判断的富有成效的开端
  • 批准号:
    2313241
  • 财政年份:
    2023
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: Understanding and Scaffolding the Productive Beginnings of Engineering Judgment in Undergraduate Students
合作研究:研究:理解和支撑本科生工程判断的富有成效的开端
  • 批准号:
    2313240
  • 财政年份:
    2023
  • 资助金额:
    $ 29.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了