Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
基本信息
- 批准号:2116647
- 负责人:
- 金额:$ 43.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalytic materials have long been used to improve the efficiency and product selectivity of many processes of vital importance to chemical manufacturing, petroleum refining, and pollution control. Given the complexity of catalytic reactions, and the need for the catalyst to operate under harsh conditions in many cases, considerable development effort – particularly from industry - has gone into the design of catalyst materials that can be readily synthesized, and that maintain stable performance for long time-on-stream. Academic research efforts, in contrast, have largely focused on theoretical, computational, and experimental identification of more active and/or lower-cost catalytic materials, but with little attention to synthesizability and stability. The project creates a new catalytic materials research framework that combines the search for more active materials with screening for synthesizability and stability under reaction conditions. The added complexity is addressed through the addition of powerful machine learning (ML) approaches that augment theoretical and computational tools to yield a more complete set of properties, or “descriptors,” associated with synthesizable, highly active, and stable catalytic materials. Ultimately, the goal is to package the various discovery tools in the form of an intuitive approach that delivers optimal results for catalysis practitioners. The project builds on the widely practiced descriptor approach to catalysis research, where a descriptor of catalytic activity (e.g., adsorption energy of an adsorbate) is computed using quantum chemical Density Functional Theory (DFT) calculations on various catalyst surfaces. Research efforts extend the current approaches by developing synthesizability, stability, and activity descriptors, using ML tools to rapidly screen through these descriptors, and collaborating with experimentalists in an iterative feedback loop to examine the accuracy of the predictions and to ensure the “catalysis practitioner-friendliness” of the combined methods. The approach will be developed in two case studies focusing on bimetallic catalysts for low temperature preferential CO oxidation in the presence of H2 (CO PROX) and partial oxidation of ethylene to ethylene oxide. The project will create a computer-aided workflow and open-source tools for predicting the synthesizability, activity, and stability of catalysts. By combining ML and DFT modeling with operando experimental characterization and testing, new structure-function relations will be identified for both reactions. In doing so, ML methods will advance beyond the prediction of activity for highly idealized systems to more realistic catalytic systems under operating conditions. Predicted materials structures and compositions will be validated against open-source high-fidelity experimental datasets in a feedback discovery loop that accelerates catalyst discovery. Beyond the technical component, the project will include outreach efforts focused on student professional development, broadened science participation, and informal science communication to help create a world-class scientific workforce. Cross-disciplinary training activities at the University of Michigan (U-M) and Wayne State University (WSU) will provide graduate and undergraduate students with a foundation to continue making scientific advances throughout their careers. A Data Science for Catalysis Training Program will enable undergraduates from WSU to visit U-M during the summer to learn the basics of data science and catalysis. Underrepresented students from Detroit schools, and their parents, will engage in science outreach events hosted by team members.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长期以来,催化材料一直用于提高许多对化学制造、石油精炼和污染控制至关重要的过程的效率和产品选择性。 考虑到催化反应的复杂性,以及在许多情况下需要催化剂在苛刻条件下操作,相当大的开发努力-特别是来自工业的-已经投入到可以容易地合成的催化剂材料的设计中,并且在长时间的运行中保持稳定的性能。 相比之下,学术研究工作主要集中在理论,计算和实验识别更活跃和/或更低成本的催化材料,但很少关注可合成性和稳定性。 该项目创建了一个新的催化材料研究框架,将寻找更多活性材料与筛选反应条件下的可合成性和稳定性相结合。 通过添加强大的机器学习(ML)方法来解决增加的复杂性,这些方法增强了理论和计算工具,以产生与可合成的,高活性和稳定的催化材料相关的更完整的属性或“描述符”。 最终,我们的目标是将各种发现工具以直观方法的形式打包,为催化从业者提供最佳结果。 该项目建立在广泛实践的催化研究描述符方法的基础上,其中催化活性的描述符(例如,吸附物的吸附能)使用量子化学密度泛函理论(DFT)计算在各种催化剂表面上进行计算。研究工作通过开发可合成性,稳定性和活性描述符扩展了当前的方法,使用ML工具快速筛选这些描述符,并与实验人员在迭代反馈循环中合作,以检查预测的准确性并确保组合方法的“催化剂友好性”。该方法将在两个案例研究中开发,重点是在H2(CO PROX)和乙烯部分氧化为环氧乙烷的存在下,用于低温优先CO氧化的催化剂。 该项目将创建计算机辅助工作流程和开源工具,用于预测催化剂的可合成性,活性和稳定性。通过将ML和DFT建模与操作实验表征和测试相结合,将为这两个反应确定新的结构-功能关系。 在这样做的过程中,ML方法将超越高度理想化系统的活性预测,以在操作条件下更现实的催化系统。 预测的材料结构和组成将在反馈发现循环中针对开源高保真实验数据集进行验证,以加速催化剂的发现。 除了技术部分,该项目将包括外展工作,重点是学生的专业发展,扩大科学参与,和非正式的科学交流,以帮助创建一个世界级的科学劳动力。密歇根大学(U-M)和韦恩州立大学(WSU)的跨学科培训活动将为研究生和本科生提供一个在整个职业生涯中继续取得科学进步的基础。 催化培训计划的数据科学将使WSU的本科生能够在夏季访问U-M,学习数据科学和催化的基础知识。来自底特律学校的代表性不足的学生及其家长将参加由团队成员主办的科学推广活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eranda Nikolla其他文献
Realizing synergy between Cu, Ga, and Zr for selective COsub2/sub hydrogenation to methanol
实现铜、镓和锆之间的协同作用,用于二氧化碳选择性加氢制甲醇
- DOI:
10.1016/j.apcatb.2024.124198 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:21.100
- 作者:
Abdullah J. Al Abdulghani;Edgar E. Turizo-Pinilla;Maria J. Fabregas-Angulo;Ryan H. Hagmann;Faysal Ibrahim;Jacob H. Jansen;Theodore O. Agbi;Samiha Bhat;Miguel Sepúlveda-Pagán;Morgan O. Kraimer;Collin M. Queen;Zhuoran Sun;Eranda Nikolla;Yomaira J. Pagán-Torres;Ive Hermans - 通讯作者:
Ive Hermans
Strategies for Designing the Catalytic Environment Beyond the Active site of Heterogeneous Supported Metal Catalysts
- DOI:
10.1007/s11244-023-01835-2 - 发表时间:
2023-06-12 - 期刊:
- 影响因子:3.000
- 作者:
Samiha Bhat;Yomaira J. Pagán-Torres;Eranda Nikolla - 通讯作者:
Eranda Nikolla
Eranda Nikolla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eranda Nikolla', 18)}}的其他基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Conference: Support for U.S. Participants at the 18th International Congress on Catalysis
会议:为第 18 届国际催化大会美国与会者提供支持
- 批准号:
2419211 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
2311986 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
- 批准号:
2333166 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: Engineering Selectivity by Catalyst Architecture Control
合作研究:通过催化剂结构控制实现工程选择性
- 批准号:
2321164 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2306125 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧电池正极固-固界面化学工程
- 批准号:
2312634 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
- 批准号:
1935581 - 财政年份:2020
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Support for U.S. Participants at the 17th International Congress on Catalysis
对第 17 届国际催化大会美国与会者的支持
- 批准号:
2003430 - 财政年份:2020
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant