CSR:Medium: A Cross-stack Approach to Reduce Memory Carbon in Cloud Data Centers
CSR:Medium:减少云数据中心内存碳的跨堆栈方法
基本信息
- 批准号:2312785
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The scaling of memory capacity (i.e., bits per memory chip) increasingly lags behind the density scaling of other system components (e.g., cores per area in a CPU chip). As a result, a typical cloud server today contains 100s of memory chips, which may increase to 1000s under the current scaling trend; manufacturing and powering so many memory chips per server will be environmentally unsustainable. This project will explore how to co-design hardware and software to store values more densely in memory and reduce how much memory to manufacture and power to reduce the carbon footprint of future cloud data centers. While prior art has explored memory compression in hardware, they have only explored how to do so in the most rudimentary software scenarios - natively running a single program that accesses little to nothing beyond memory. The software stack in cloud is much more complex; user applications run in virtual machines, concurrently with collocated workloads, and often heavily exercise the operating system (OS) file cache and other in-memory caches. This project - CloudComp- will co-design hardware memory compression with different layers of the cloud system software (e.g., hypervisor, storage stack, in-memory databases, job scheduler) to enable practical deployment that can satisfy the diverse requirements and application scenarios in cloud. CloudComp will bring together researchers in computer architecture, cloud computing, OS, storage systems, and databases. To facilitate real world impact, this project will build and release real-system prototypes of hardware memory compression and partner closely with industry. By enabling an alternative path to scale up the effective size of the memory size for future cloud data centers, CloudComp will help reduce the impact of cloud computing on climate change over the brute-force approach of making more memory chips. Densely storing more data into the available amount of memory can also benefit climate in other ways such as enabling bigger-scale and/or finer-resolution climate modeling and simulation. CloudComp includes educational and engagement activities to broaden participation in research and attract new students, especially seeking out students from underrepresented groups. CloudComp will actively involve undergraduate students in building real-system prototypes to cultivate their curiosity for research. Lastly, the cross-layer insights gained through CloudComp will help guide the research of other complementary memory system techniques to combat the slowing physical scaling of memory. CloudComp is funded in part by the National Discovery Cloud for Climate (NDC-C) program as a core purpose of the project is to reduce the carbon emissions of cloud systems through this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
存储器容量的扩展(即,每个存储器芯片的位数)越来越落后于其他系统组件的密度扩展(例如,CPU芯片中的每个区域的核)。因此,今天一台典型的云服务器包含100个内存芯片,在当前的扩展趋势下可能会增加到1000个;每台服务器制造和供电如此多的内存芯片将在环境上不可持续。该项目将探索如何共同设计硬件和软件,以在内存中更密集地存储价值,并减少需要制造的内存和电力,以减少未来云数据中心的碳足迹。虽然现有技术已经探索了硬件中的内存压缩,但他们只探索了如何在最基本的软件场景中做到这一点--本机运行一个程序,该程序除了内存之外几乎不访问任何东西。云中的软件堆栈要复杂得多;用户应用程序在虚拟机中运行,与并置的工作负载并发,并且通常会大量占用操作系统(OS)文件缓存和其他内存缓存。该项目-CloudComp-将与云系统软件的不同层(如管理程序、存储堆栈、内存数据库、作业调度器)共同设计硬件内存压缩,以实现满足云中不同需求和应用场景的实际部署。CloudComp将汇聚计算机架构、云计算、操作系统、存储系统和数据库的研究人员。为了促进真实世界的影响,该项目将构建和发布硬件内存压缩的真实系统原型,并与业界密切合作。通过为未来的云数据中心提供一条扩大有效内存大小的替代路径,CloudComp将通过制造更多内存芯片的蛮力方法,帮助减少云计算对气候变化的影响。将更多数据密集地存储到可用内存量中还可以在其他方面对气候产生好处,例如支持更大规模和/或更精细分辨率的气候建模和模拟。CloudComp包括教育和参与活动,以扩大对研究的参与并吸引新学生,特别是从代表性不足的群体中寻找学生。CloudComp将积极让本科生参与构建真实系统原型,以培养他们对研究的好奇心。最后,通过CloudComp获得的跨层洞察将有助于指导其他补充内存系统技术的研究,以应对内存物理扩展速度缓慢的问题。CloudComp的部分资金来自国家发现云气候(NDC-C)计划,该项目的核心目的是通过这项研究减少云系统的碳排放。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FLOAT: Federated Learning Optimizations with Automated Tuning
- DOI:10.1145/3627703.3650081
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Ahmad Faraz Khan;A. Khan;A. Abdelmoniem;Samuel Fountain;Ali R. Butt;Ali Anwar
- 通讯作者:Ahmad Faraz Khan;A. Khan;A. Abdelmoniem;Samuel Fountain;Ali R. Butt;Ali Anwar
Application-Attuned Memory Management for Containerized HPC Workflows
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:†. MoizArif;†. AvinashMaurya;†. M.MustafaRafique;Dimitrios S. Nikolopoulos;A. R. Butt
- 通讯作者:†. MoizArif;†. AvinashMaurya;†. M.MustafaRafique;Dimitrios S. Nikolopoulos;A. R. Butt
Towards cost-effective and resource-aware aggregation at Edge for Federated Learning
- DOI:10.1109/bigdata59044.2023.10386691
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:A. Khan;Yuze Li;Xinran Wang;Sabaat Haroon;Haider Ali;Yue Cheng;A. Butt;Ali Anwar
- 通讯作者:A. Khan;Yuze Li;Xinran Wang;Sabaat Haroon;Haider Ali;Yue Cheng;A. Butt;Ali Anwar
Towards Efficient Python Interpreter for Tiered Memory Systems
面向分层内存系统的高效 Python 解释器
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Li, Yuze;Yao, Shunyu;Mobin, Jaiaid;Rafique, M. Mustafa;Nikolopoulos, Dimitrios;Sundararajah, Kirshanthan;Li, Huaicheng;Butt, Ali R.
- 通讯作者:Butt, Ali R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jian其他文献
Publishing Graphs Under Node Differential Privacy
在节点差分隐私下发布图
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.9
- 作者:
Xun Jian;Yue Wang;Lei Chen - 通讯作者:
Lei Chen
Rescuing Uncorrectable Fault Patterns in On-Chip Memories through Error Pattern Transformation
通过错误模式转换来挽救片上存储器中无法纠正的故障模式
- DOI:
10.1145/3007787.3001204 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Henry Duwe;Xun Jian;Daniel Petrisko;Rakesh Kumar - 通讯作者:
Rakesh Kumar
High Performance, Energy Efficient Chipkill Correct Memory with Multidimensional Parity
具有多维奇偶校验的高性能、高能效 Chipkill 正确内存
- DOI:
10.1109/l-ca.2012.21 - 发表时间:
2013 - 期刊:
- 影响因子:2.3
- 作者:
Xun Jian;J. Sartori;Henry Duwe;Rakesh Kumar - 通讯作者:
Rakesh Kumar
Mechanical Properties of Piezoelectric Stack Actuators under Combined Electro-Mechanical Loading
机电联合负载下压电堆栈执行器的机械性能
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shaoze Yan;Kai Zheng;Xun Jian - 通讯作者:
Xun Jian
Real-Word Effectiveness of Early Start-Up and Short-Term Use of PCSK9 Inhibitor in the Treatment of Acute Coronary Syndrome in China.
PCSK9抑制剂早期启动和短期使用在中国治疗急性冠脉综合征的实际疗效。
- DOI:
10.1016/j.amjcard.2023.08.166 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ting Luo;Jing Yuan;Lingzhi Qiu;Daoquan Liu;Xun Jian;Ping Hu;Pengfei Yan;Qing Wang;Hua Yan - 通讯作者:
Hua Yan
Xun Jian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jian', 18)}}的其他基金
CAREER: MemMax: Maximizing Cyberinfrastructure Memory Utilization via Hardware Acceleration for OS-level Memory Utilization Management
职业:MemMax:通过操作系统级内存利用率管理的硬件加速最大化网络基础设施内存利用率
- 批准号:
1942590 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRII: SHF: Pointer-aware Memory: Boosting Cybersecurity by Making Strong Memory Protection Affordable for Irregular Applications
CRII:SHF:指针感知内存:通过为不规则应用程序提供强大的内存保护来增强网络安全
- 批准号:
1850025 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230087 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303115 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303114 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2404946 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
- 批准号:
2310422 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303116 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant