SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
基本信息
- 批准号:2312758
- 负责人:
- 金额:$ 119.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural network (DNN)-boosted three dimensional (3D) reconstruction promises to become the next tech disruptor and revolutionize many aspects of human life and means of production. It is expected to reach a value of $1575.64 billion by 2028. This is because 3D-reconstructed data is rich in scale and geometric information, thus enabling 3D intelligent systems to achieve much better machine-environment understanding and perform newly possible functionalities. In parallel with the growing need for 3D reconstruction, the number of daily-life devices has been booming and is estimated to reach 500 billion by 2030. Therefore, there has been a monumental demand for bringing 3D reconstruction-enabled intelligent functionalities into numerous (heterogeneous) devices, ranging from drones to self-driving cars, augmented reality (AR) and virtual reality (VR) devices, and many more, for enabling ubiquitous 3D intelligence. Despite the big promise of ubiquitous on-device 3D intelligence, a vast and increasing gap still exists between the prohibitive complexity of powerful 3D reconstruction algorithms and the constrained resources in commonly used devices. This is because the increased data-, model-, and training-level complexity required in 3D reconstruction-enabled intelligent functionalities/models exponentially aggravates their computational cost as compared to 2D intelligent ones. Furthermore, 3D reconstruction models feature very unique computational and data access patterns compared to those of 2D image-based DNN models. This project aims to close the aforementioned gap and foster a systematic breakthrough for enabling on-device 3D reconstruction-enabled intelligent functionalities through a holistic exploration of a joint optimization and harmonization of algorithm-, hardware-, and system-level innovations. The results of this project will culminate in the creation of innovative course materials and open educational resources designed to engage a diverse student body, fostering an inclusive learning environment and serving as a springboard for creativity and innovation. The project will advance knowledge and produce scientific principles and tools for enabling on-device 3D intelligence. First, Thrusts 1 and 2 will develop the fundamental underpinnings of dedicated algorithm-hardware co-design solutions for enabling instant training and real-time inference of on-device 3D reconstruction. In particular, Thrust 1 focuses on per-scene optimization scenarios and Thrust 2 concentrates on cross-scene scenarios considering that a sufficient number of captured views of the target scene is not always available. Second, Thrusts 3 and 4 will develop algorithm-system co-optimization solutions for enabling resource-adaptive on-device 3D intelligence. Specifically, Thrust 3 deals with privacy-sensitive/proprietary on-device training data by extending to distributed learning of cross-scene 3D reconstruction models over heterogeneous edge devices, while Thrust 4 explores resource adaptive inference scheduling methods by leveraging algorithm-system co-design. Finally, an integration effort is conducted to evaluate the innovations of the four thrusts and demonstrate their benefits in realistic systems. Overall, this project is geared towards significantly advancing the state-of-the-art of on-device 3D reconstruction by improving model accuracy, efficiency and enabling real-time inference and learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)推动的三维(3D)重建有望成为下一个技术颠覆者,并彻底改变人类生活和生产方式的许多方面。预计到2028年将达到15756.4亿美元。这是因为3D重建数据具有丰富的尺度和几何信息,从而使3D智能系统能够实现更好的机器环境理解并执行新的可能功能。随着对3D重建需求的不断增长,日常生活设备的数量一直在蓬勃发展,预计到2030年将达到5000亿。因此,对于将支持3D重建的智能功能引入众多(异构)设备(从无人机到自动驾驶汽车、增强现实(AR)和虚拟现实(VR)设备等)中以实现无处不在的3D智能,存在巨大的需求。尽管无处不在的设备上3D智能有很大的前景,但强大的3D重建算法的复杂性与常用设备中的有限资源之间仍然存在巨大且不断增加的差距。这是因为与2D智能功能相比,3D重建使能的智能功能/模型中所需的增加的数据、模型和训练级复杂性指数地增加了它们的计算成本。此外,与基于2D图像的DNN模型相比,3D重建模型具有非常独特的计算和数据访问模式。该项目旨在缩小上述差距,并通过全面探索算法、硬件和系统级创新的联合优化和协调,促进实现设备上3D重建智能功能的系统性突破。该项目的成果将最终创造创新的课程材料和开放的教育资源,旨在吸引多样化的学生,促进包容性的学习环境,并作为创造力和创新的跳板。该项目将推进知识,并产生科学原理和工具,以实现设备上的3D智能。首先,Thrusts 1和Thrusts 2将开发专用算法硬件协同设计解决方案的基本基础,以实现设备上3D重建的即时训练和实时推理。特别地,考虑到目标场景的足够数量的捕获视图并不总是可用,推力1关注于每场景优化场景,而推力2关注于跨场景。第二,Thrusts 3和4将开发算法-系统协同优化解决方案,以实现资源自适应的设备上3D智能。具体来说,Thrust 3通过扩展到异构边缘设备上跨场景3D重建模型的分布式学习来处理隐私敏感/专有的设备上训练数据,而Thrust 4通过利用算法系统协同设计来探索资源自适应推理调度方法。最后,一个集成的努力进行评估的四个推力的创新,并证明其在现实系统中的好处。总体而言,该项目旨在通过提高模型精度、效率和实现实时推理和学习,显著推进设备上3D重建的最新技术水平。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingyan Lin其他文献
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Y. Fu;Ye Yuan;Souvik Kundu;Shang Wu;Shunyao Zhang;Yingyan Lin - 通讯作者:
Yingyan Lin
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
- DOI:
10.1109/dac56929.2023.10247710 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin - 通讯作者:
Yingyan Lin
Performance Analysis of Direct Carbon Fuel Cell-Braysson Heat Engine Coupling System
直接碳燃料电池-布雷松热机耦合系统性能分析
- DOI:
10.20964/2020.06.32 - 发表时间:
2020-06 - 期刊:
- 影响因子:1.5
- 作者:
Liwei Chen;Lihua Gao;Yingyan Lin - 通讯作者:
Yingyan Lin
Performance Multiple Objective Optimization of Irreversible Direct Carbon Fuel Cell/Stirling Thermo-Mechanical Coupling System
不可逆直接碳燃料电池/斯特林热机耦合系统性能多目标优化
- DOI:
10.20964/2020.01.04 - 发表时间:
2020 - 期刊:
- 影响因子:1.5
- 作者:
Liwei Chen;Yingyan Lin - 通讯作者:
Yingyan Lin
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin - 通讯作者:
Yingyan Lin
Yingyan Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingyan Lin', 18)}}的其他基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2345577 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
2346091 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
- 批准号:
2211815 - 财政年份:2022
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2048183 - 财政年份:2021
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
- 批准号:
2054865 - 财政年份:2020
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications
CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台
- 批准号:
2016727 - 财政年份:2020
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937592 - 财政年份:2019
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934767 - 财政年份:2019
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
相似国自然基金
高超声速飞行器跨介质超视距电波传播机理与统一信道建模方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向冶炼中高温余热利用的熔融介质模块式储换热一体化技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多孔介质中全/多氟化合物污染物迁移机制及模型研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型石榴石基高熵微波介质陶瓷结构与性能调控研究
- 批准号:JCZRLH202500653
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于水头损失效应的溶洞-管流-裂隙-孔隙介质中水动力学渗流模型
- 批准号:JCZRYB202501319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
跨介质量子增强探测技术-跨介质量子增强探测技术研究
- 批准号:2025C02029
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
炉内非均匀多物理场中声线弯曲传播机理及泄漏声定位研究
- 批准号:QN25A040003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
极地海域跨介质零功耗温度感知的热-电-力耦合机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于变磁通记忆电机的跨介质飞行器一
体化电推进技术研究
- 批准号:
- 批准年份:2025
- 资助金额:100.0 万元
- 项目类别:省市级项目
雷电回击损伤试验标准中界面能量传递
的调控机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230087 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303115 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303114 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
- 批准号:
2310422 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2404946 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
- 批准号:
2303116 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Continuing Grant
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313109 - 财政年份:2023
- 资助金额:
$ 119.84万 - 项目类别:
Standard Grant