Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
基本信息
- 批准号:2312948
- 负责人:
- 金额:$ 64.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to enable automatic question answering systems to produce paragraph-level answers. Prior work on question answering has focused on simpler questions that can be answered with short phrases. Building systems to produce paragraph-level answers opens up exciting opportunities to answer complicated questions, and to offer more nuanced and comprehensive answers to simpler questions. This project will create comprehensive and reliable evaluation protocols for long form question answering (LFQA), pioneer multilingual studies to broaden information access to a wider population, and develop new algorithms that integrate web search with LFQA systems to provide verifiable long form answers paired with human-written evidence documents. This project focuses on three core dimensions of LFQA – datasets, evaluation, and modeling. Expanding the scope of prior English-centric LFQA, this research will investigate multilingual capabilities of large language models by constructing multilingual LFQA datasets and studying knowledge transfer across languages. In terms of modeling, it will propose a new framework that iteratively weaves together – in a transparent manner—knowledge retrieved from documents and memorized knowledge from a language model. Finally for evaluation, the project will engage domain experts who are familiar with the question topic to provide rationales for their evaluation of model generated answers. Such feedback will be used to derive a fine-grained annotation framework which localizes errors and unpack the weaknesses of generated answers. Together, the proposed work will bring significant progress to LFQA, an emerging topic for natural language processing and artificial intelligence research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在使自动问答系统能够产生段落级别的答案。以前关于问题回答的工作集中在可以用简短短语回答的更简单的问题上。构建生成段落级答案的系统为回答复杂问题提供了令人兴奋的机会,并为更简单的问题提供了更细微和更全面的答案。该项目将为长格式问题回答(LFQA)创建全面和可靠的评估协议,开创多语言研究的先河,以扩大更广泛人群的信息获取渠道,并开发将网络搜索与LFQA系统相结合的新算法,以提供可核实的长格式答案与人类书面证据文件配对。本项目关注LFQA的三个核心维度--数据集、评估和建模。扩展以往以英语为中心的LFQA的范围,本研究将通过构建多语言LFQA数据集和研究跨语言的知识转移来考察大型语言模型的多语言能力。在建模方面,它将提出一个新的框架,以透明的方式将从文件中检索的知识和从语言模型中记忆的知识迭代地编织在一起。最后,对于评估,该项目将聘请熟悉问题主题的领域专家为他们评估模型生成的答案提供理由。这样的反馈将被用来派生一个细粒度的注释框架,该框架定位错误并解包生成的答案的弱点。总之,拟议的工作将为LFQA带来重大进展,LFQA是自然语言处理和人工智能研究的一个新兴课题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eunsol Choi其他文献
TyDiP: A Dataset for Politeness Classification in Nine Typologically Diverse Languages
TyDiP:九种不同语言的礼貌分类数据集
- DOI:
10.48550/arxiv.2211.16496 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Srinivasan;Eunsol Choi - 通讯作者:
Eunsol Choi
From Distributional to Overton Pluralism: Investigating Large Language Model Alignment
从分布式到奥弗顿多元主义:研究大语言模型对齐
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Thom Lake;Eunsol Choi;Greg Durrett - 通讯作者:
Greg Durrett
Exploring Design Choices for Building Language-Specific LLMs
探索构建特定语言法学硕士的设计选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Atula Tejaswi;Nilesh Gupta;Eunsol Choi - 通讯作者:
Eunsol Choi
Hedge Detection as a Lens on Framing in the GMO Debates: A Position Paper
对冲检测作为转基因生物辩论框架的镜头:立场文件
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Eunsol Choi;Chenhao Tan;Lillian Lee;Cristian Danescu;Jennifer Spindel - 通讯作者:
Jennifer Spindel
Continual Learning for On-Device Speech Recognition Using Disentangled Conformers
使用解缠一致器持续学习设备上语音识别
- DOI:
10.1109/icassp49357.2023.10095484 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anuj Diwan;Ching;Wei;Paden Tomasello;Eunsol Choi;David F. Harwath;Abdel - 通讯作者:
Abdel
Eunsol Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Standard Grant














{{item.name}}会员




