Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
基本信息
- 批准号:2315614
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Federated Learning (FL) is a distributed machine learning approach that allows multiple data owners ("clients") to collaboratively train machine learning models that benefit from each owner's data without having to share the data itself. Federated learning can improve privacy and protect restricted data, which makes it an attractive tool in sectors such as healthcare, fintech, and autonomous driving. However, federated learning is subject to critical learning (CL) periods: the initial rounds of training have an outsized impact on models' quality and robustness. CL periods may help federated learning systems improve model quality, if new methods for selecting and weighting contributions from different clients can be developed to address the causes of CL periods. However, they also present opportunities for attackers, who may be able to harness CL periods to launch more precise and impactful attacks. To better understand these opportunities and attacks, this project will conduct a comprehensive analysis of the characteristics and exploitability of CL periods so as to advance the study of the robustness and vulnerability of federated learning. The team will develop datasets, models, algorithms, and system source code and share it with the research community, while the scientific findings will be widely disseminated as research papers, technical reports, book chapters, course materials, and tutorials. Undergraduate students, particularly those from under-represented groups, will be engaged in the proposed research activities. The central goal of this project is to investigate and understand CL periods during the FL training process, exploiting unique properties of CL periods to enhance FL security and robustness while uncovering vulnerabilities that attackers could exploit. To achieve this objective, the project investigates three main themes. The first theme focuses on how to efficiently identify CL periods and related vulnerabilities in a timely manner during FL training. The second theme focuses on how to optimize FL model accuracy with CL periods awareness, focusing on methods for adaptive client selection that are tuned to the causes of CL periods developed in the first theme. The third theme investigates ways to generalize the findings from Theme 1 to other popular FL techniques such as gradient compression, fair aggregation, personalization, and their joint effect, to address system heterogeneity (e.g., communication bandwidth differences, heterogeneous local models, and fairness concerns). Concurrently with the three main themes, the team will also design and develop a robust FL testbed to empirically evaluate the proposed algorithms with real-world models and datasets.This project is jointly funded by Secure and Trustworthy Cyberspace and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习(FL)是一种分布式机器学习方法,允许多个数据所有者(“客户端”)协作训练机器学习模型,这些模型从每个所有者的数据中受益,而无需共享数据本身。联合学习可以改善隐私并保护受限数据,这使其成为医疗保健,金融科技和自动驾驶等领域的一个有吸引力的工具。然而,联邦学习受到关键学习(CL)时期的影响:最初的几轮训练对模型的质量和鲁棒性有巨大的影响。CL周期可以帮助联邦学习系统提高模型质量,如果可以开发新的方法来选择和加权来自不同客户端的贡献,以解决CL周期的原因。然而,它们也为攻击者提供了机会,他们可能能够利用CL周期来发动更精确和更有影响力的攻击。为了更好地理解这些机会和攻击,本项目将对CL周期的特征和可利用性进行全面分析,以推进联邦学习鲁棒性和脆弱性的研究。该团队将开发数据集,模型,算法和系统源代码,并与研究社区共享,而科学发现将作为研究论文,技术报告,书籍章节,课程材料和教程广泛传播。本科生,特别是那些来自代表性不足的群体,将参与拟议的研究活动。该项目的中心目标是在FL训练过程中调查和了解CL周期,利用CL周期的独特属性来增强FL的安全性和鲁棒性,同时发现攻击者可能利用的漏洞。为实现这一目标,该项目调查了三个主要主题。第一个主题的重点是如何有效地识别CL期间和相关的漏洞,在FL培训及时。第二个主题的重点是如何优化FL模型的准确性与CL周期的意识,专注于自适应客户端选择的方法,调整到CL周期的原因在第一个主题中开发。第三个主题研究如何将主题1的发现推广到其他流行的FL技术,如梯度压缩,公平聚合,个性化及其联合效应,以解决系统异质性(例如,通信带宽差异、异构本地模型和公平性问题)。在讨论三个主题的同时,该研究小组还将设计和开发一个强大的FL测试平台,以便用真实世界的模型和数据集对所提出的算法进行经验性评估。该项目由安全和可信的网络空间和刺激竞争研究的既定计划(EPSCoR)共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Li其他文献
Improved mechanical properties and thermal expansion behavior of NiO-Y2O3 stabilized ZrO2 composite by addition of LaNbO4 for anode-support of planar solid oxide fuel cells
通过添加 LaNbO4 改善 NiO-Y2O3 稳定 ZrO2 复合材料的机械性能和热膨胀行为,用于平面固体氧化物燃料电池的阳极支撑
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.2
- 作者:
Jian Pu;Jian Pu;Jian Li;Jian Li - 通讯作者:
Jian Li
Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters
无需先验介质参数即可检测和定位分层介质中的目标
- DOI:
10.1088/0256-307x/37/6/064301 - 发表时间:
2020-05 - 期刊:
- 影响因子:3.5
- 作者:
Jian Li;Hong-Juan Yang;Jun Ma;Xiang Gao;Jun-Hong Li;Jian-Zheng Cheng;Wen Wang;Cheng-Hao Wang - 通讯作者:
Cheng-Hao Wang
The Ovarian Cycle of the Fish Leptobotia elongata Bleeker, Endemic to China
中国特有细长细线鱼的卵巢周期
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0.6
- 作者:
Jiangxia Yin;Paul Racey;Jian Li;Yaoguang Zhang - 通讯作者:
Yaoguang Zhang
Different discrete-time noise-suppression Z-type models for online solving time-varying and static cube roots in real and complex domains: Application to fractals
用于在线求解实复杂域中时变和静态立方根的不同离散时间噪声抑制 Z 型模型:在分形中的应用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6
- 作者:
Jian Li;Yingyi Sun;Gang Wang;Yongbai Liu;Zhongbo Sun - 通讯作者:
Zhongbo Sun
Automatic Semantic Analysis Framework of Dickinson’s Portfolio based on Character Recognition and Artificial Intelligence
- DOI:
10.1109/iceca49313.2020.9297534 - 发表时间:
2020-11 - 期刊:
- 影响因子:0
- 作者:
Jian Li - 通讯作者:
Jian Li
Jian Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Li', 18)}}的其他基金
CRII: CNS: NeTS: Adaptive Cache Dimensioning in Cloud CDNs: Foundations and Practice
CRII:CNS:NetS:云 CDN 中的自适应缓存维度:基础与实践
- 批准号:
2104880 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Enhanced Automotive Radar Coexistence and Performance
增强的汽车雷达共存性和性能
- 批准号:
1708509 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Low-Resolution Sampling with Generalized Thresholds
CIF:中:协作研究:具有广义阈值的低分辨率采样
- 批准号:
1704240 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
EAGER: TDM Solar Cells: Collaborative Research: Exploration of High Open-Circuit Voltage and Stable Wide-Bandgap Cu2BaSnS4 Solar Cells for Monolithic Tandem Cell Applications
EAGER:TDM 太阳能电池:合作研究:用于单片串联电池应用的高开路电压和稳定宽带隙 Cu2BaSnS4 太阳能电池的探索
- 批准号:
1664983 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
I-Corps: Metal-assisted Delayed Fluorescent Emitters for Organic Displays
I-Corps:用于有机显示器的金属辅助延迟荧光发射器
- 批准号:
1332354 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CIF: Small: Adaptive Spectral Estimation and Error Bounding
CIF:小:自适应频谱估计和误差界限
- 批准号:
1218388 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Molecular and Macromolecular Organic Acceptors for Photovoltaic Applications
用于光伏应用的分子和高分子有机受体
- 批准号:
0756148 - 财政年份:2008
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Heavy Metal Complexes as Triplet Absorbers for Organic Photovoltaics
职业:重金属配合物作为有机光伏的三线态吸收剂
- 批准号:
0748867 - 财政年份:2008
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
EXP-SA: Enhanced Quadrupole Resonance Technology for Explosive Detection
EXP-SA:用于爆炸物检测的增强型四极共振技术
- 批准号:
0729727 - 财政年份:2007
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Flexible Transmit Beampattern Design via Waveform Diversity
通过波形分集进行灵活的发射波束方向图设计
- 批准号:
0634786 - 财政年份:2006
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant














{{item.name}}会员




