LEAPS-MPS: Exploring various subgrid scale turbulence models via convergence analysis, data assimilation and deep learning
LEAPS-MPS:通过收敛分析、数据同化和深度学习探索各种亚网格尺度湍流模型
基本信息
- 批准号:2316894
- 负责人:
- 金额:$ 20.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Turbulence is a set of complex nonlinear phenomena showing unsteady, irregular, seemingly random and chaotic characteristic motions of fluids. It happens in various systems involving the atmosphere, ocean, aerodynamics, and technology. The study of turbulent fluid flow is well known to be highly important and challenging. Since some issues of existence and uniqueness of solutions of the three-dimensional Navier-Stokes equations are still not yet fully established despite century-long efforts, turbulence modeling currently provides the best qualitative and, in many cases, even quantitative measures for many problems in applications. Recently, generating through an averaging process, various subgrid scale turbulence models were developed with good success. These models not only capture the large-scale dynamics of the flow, but also provide “unresolved” small-scale representations of the physics of fluids as well as reliable closure models to the averaged equations. Moreover, they have nice analytical, empirical and computational properties, such as global regularity and good matching with empirical data collected from examples such as turbulent channels and pipes. Therefore, studying these models will be beneficial and effective as far as both mathematical rigors and real-world applications are concerned. This project aims to study these subgrid turbulence models from the point of view of both basic mathematical research and applications. The project will have significant impacts on both undergraduate and graduate students, particularly those from underrepresented groups, through their participation in accessible research projects. This will also establish a strong research agenda for the PI via working with different career-stage researchers, building the research capability and curricular offerings of the Department of Mathematics to fulfill regional needs for data science expertise and offering educational experiences in the local community. In this project, a synthesizing effort of convergence analysis, data assimilation algorithm and deep learning computation will be made to study various subgrid scale turbulence models. The PI will first explore the relationship between, and the emergence of, these models in association with the Navier-Stokes equations. This will help us explore their intriguing connections to the global regularity problem. Next, the PI will apply the data assimilation algorithm to these subgrid scale models. The PI plans to build a data assimilation system for these models, prove the existence of solutions, and show convergence of the data-assimilated solutions of these models to the weak solutions of the Navier-Stokes equations on a three-dimensional domain. As a target, the PI will conduct parameter estimation via the determining map and its computation using deep learning. The PI aims to develop a rigorous framework via the determining map and computing it using neural networks. Exploiting the computational advantages of recent deep learning techniques, the PI and her team hope to be able to treat some cases where the traditional numerical methods face hurdles such as the curse of dimensionality and complex geometries. This project will help provide an illuminating link between various subgrid scale turbulence models and the Navier-Stokes equations and improve our understanding of turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流是一组复杂的非线性现象,表现出流体的非稳态、无规则、看似随机和混沌的特征运动。它发生在涉及大气、海洋、空气动力学和技术的各种系统中。湍流流动的研究是非常重要和具有挑战性的。由于三维Navier-Stokes方程的解的存在性和唯一性的一些问题仍然没有完全建立,尽管长达一个世纪的努力,湍流模拟目前提供了最好的定性,在许多情况下,甚至定量的措施,许多问题的应用。近年来,通过平均化过程,各种亚网格尺度湍流模型得到了很好的发展。这些模型不仅捕捉大规模的流动动力学,但也提供了“未解决的”小规模表示的物理流体以及可靠的封闭模型的平均方程。此外,他们有很好的分析,经验和计算性能,如全局规律性和良好的匹配与经验数据收集的例子,如湍流通道和管道。因此,研究这些模型将是有益的和有效的,无论是数学上的严格性和现实世界的应用。本项目旨在从基础数学研究和应用的角度对这些亚网格湍流模型进行研究。该项目将对本科生和研究生产生重大影响,特别是那些代表性不足的群体,通过他们参与无障碍研究项目。这也将通过与不同职业阶段的研究人员合作,为PI建立一个强大的研究议程,建立数学系的研究能力和课程,以满足区域对数据科学专业知识的需求,并在当地社区提供教育经验。 本项目将综合运用收敛分析、数据同化算法和深度学习计算等方法,对各种亚网格尺度湍流模式进行研究。PI将首先探索与Navier-Stokes方程相关的这些模型之间的关系以及这些模型的出现。这将有助于我们探索它们与全局正则性问题的有趣联系。接下来,PI将把数据同化算法应用于这些次网格尺度模式。PI计划为这些模式建立一个数据同化系统,证明解的存在性,并显示这些模式的数据同化解收敛到三维域上的Navier-Stokes方程的弱解。作为目标,PI将通过确定映射及其使用深度学习的计算进行参数估计。PI的目标是通过确定映射并使用神经网络计算它来开发一个严格的框架。利用最近深度学习技术的计算优势,PI和她的团队希望能够处理一些传统数值方法面临障碍的情况,例如维数灾难和复杂几何形状。该项目将有助于提供各种次网格尺度湍流模型和Navier-Stokes方程之间的启发性联系,并提高我们对湍流的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Tian其他文献
To what extent are postgraduate students from China prepared for academic writing needed on UK master's courses?
中国研究生在多大程度上为英国硕士课程所需的学术写作做好了准备?
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jing Tian;G. Low - 通讯作者:
G. Low
Quorum-Sensing Signal DSF Inhibits the Proliferation of Intestinal Pathogenic Bacteria and Alleviates Inflammatory Response to Suppress DSS-Induced Colitis in Zebrafish
群体感应信号 DSF 抑制斑马鱼肠道致病菌的增殖并减轻炎症反应,从而抑制 DSS 诱导的结肠炎
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.9
- 作者:
Ruiya Yi;Bo Yang;Hongjie Zhu;Yu Sun;Hailan Wu;Zhihao Wang;Yongbo Lu;Ya;Jing Tian - 通讯作者:
Jing Tian
An Ontology-based Knowledge Management System for Software Testing
基于本体的软件测试知识管理系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
S. Vasanthapriyan;Jing Tian;Dongdong Zhao;Shengwu Xiong;Jianwen Xiang - 通讯作者:
Jianwen Xiang
Utility of Sonazoid-Enhanced Ultrasound for the Macroscopic Classification of Hepatocellular Carcinoma: A Meta-analysis
Sonazoid 增强超声在肝细胞癌宏观分类中的应用:荟萃分析
- DOI:
10.1016/j.ultrasmedbio.2022.06.015 - 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Zijie Zheng;Wei Xie;Jing Tian;Jiayi Wu;Baoming Luo;Xiaolin Xu - 通讯作者:
Xiaolin Xu
Prevalence and incidence of skin tear in older adults:A systematic review and meta-analysis.
老年人皮肤撕裂的患病率和发生率:系统评价和荟萃分析。
- DOI:
10.1016/j.jtv.2024.06.010 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Shenbi Yang;XiaoLi Liang;Jian She;Jing Tian;Zhifei Wen;Yanmin Tao;Hongyan Wang;Xiangeng Zhang - 通讯作者:
Xiangeng Zhang
Jing Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Tian', 18)}}的其他基金
Pathways to Conceptual Knowledge of Decimals
小数概念知识的途径
- 批准号:
2300947 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Continuing Grant
Pathways to Conceptual Knowledge of Decimals
小数概念知识的途径
- 批准号:
2347386 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Continuing Grant
CAREER: A Model-Guided and Holistic Approach for Peripheral Security
职业:模型引导的整体外围安全方法
- 批准号:
2145744 - 财政年份:2022
- 资助金额:
$ 20.49万 - 项目类别:
Continuing Grant
相似国自然基金
时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
- 批准号:24ZR1478500
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
- 批准号:2024Y9704
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
- 批准号:
23K26472 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
- 批准号:
24K18340 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
- 批准号:
2316793 - 财政年份:2024
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
- 批准号:
2316582 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant