CCSS: Reference-free and Spatial-aware Deep Sensor Array Decoding towards High-fidelity Remote Health Monitoring
CCSS:无参考和空间感知深度传感器阵列解码,实现高保真远程健康监测
基本信息
- 批准号:2317148
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Remote health monitoring is highly promising for big data-driven precision medicine, through conveniently and obtrusively tracking health conditions of people. However, when the sensing device is placed off-body for remote monitoring, the captured human signal is usually very weak. This is because the signal quickly decays when it propagates from the human body to the device. Further, the signal of the target person may be interfered if there are more than one person in the environment. Targeting these crucial challenges, this project will advance the science of high-fidelity remote health monitoring, through efforts on innovating the remote signal sensing and decoding system architecture. This project will greatly advance the national health towards pervasive, high-fidelity, and long-term big data establishment. More specifically, this project will design a novel deep senor array decoding system, which leverages the data-driven deep learning algorithm to decode the noisy and weak signal, without needing a reference signal used for propagation-induced distortion estimation. Besides, the multi-sensor spatial information will be leveraged by deep learning to boost the signal fidelity and recover the signal-of-interest from noise and interferences. The project will further contribute to research-education integration through new course development, new pedagogy practices, curriculum enhancement, and broad student training. The PI will continue broadening the participation of undergraduate, women and minority students, as well as K-12 students, with diverse background, thereby effectively training the next-generation engineers and researchers.This project will innovate a novel deep sensor array decoding system, which can decode the signal-of-interest from the noisy and weak signal remotely captured, towards promising remote health monitoring and precision medicine big data. The multi-sensor signal captured by a sensor array, will be analyzed by the deep learning algorithm to learn the noise patterns, suppress the noise, and decode the high-fidelity signal. This data-driven approach does not need the reference signal that is usually used for propagation-induced distortion estimation, thereby enabling intelligent and convenient signal decoding. The spatial dynamics captured by the sensor array encode complex information about the signal-of-interest, can be effectively learned with the deep learning-empowered signal decoding. Besides, the deep learning algorithm will learn to separate the signal-of-interest if there are more than one person in the environment. The specific signal patterns for the target user will be learned and used by the deep learning algorithm to mine the target-relevant patterns in the multi-sensor signal captured. The proposed system architecture will be further evaluated with real-world experiments, to demonstrate the generalizable innovation and the effectiveness of the system. The novel system architecture will broadly contribute to various remote health monitoring applications, advance national health with pervasive and convenient big health data establishment, and promote the science on deep sensor array decoding for high-fidelity remote health monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
远程健康监测是非常有前途的大数据驱动的精准医疗,通过方便和突兀地跟踪人的健康状况。然而,当感测装置被放置在身体外用于远程监测时,捕获的人体信号通常非常弱。这是因为信号从人体传播到设备时会迅速衰减。此外,如果在环境中存在多于一个人,则目标人的信号可能被干扰。针对这些关键挑战,该项目将通过努力创新远程信号传感和解码系统架构,推进高保真远程健康监测科学。该项目将极大地推动国民健康朝着普及、高保真、长期的大数据建设方向发展。更具体地说,该项目将设计一种新型的深度传感器阵列解码系统,该系统利用数据驱动的深度学习算法来解码噪声和弱信号,而不需要用于传播引起的失真估计的参考信号。此外,深度学习将利用多传感器空间信息来提高信号保真度,并从噪声和干扰中恢复感兴趣的信号。该项目将通过新的课程开发、新的教学实践、课程改进和广泛的学生培训,进一步促进研究与教育的融合。PI将继续扩大本科生、女性和少数民族学生以及K-12学生的参与,从而有效地培养下一代工程师和研究人员。该项目将创新一种新型的深度传感器阵列解码系统,可以从远程捕获的噪声和微弱信号中解码出感兴趣的信号,有前途的远程健康监测和精准医疗大数据。由传感器阵列捕获的多传感器信号将通过深度学习算法进行分析,以学习噪声模式,抑制噪声,并解码高保真信号。这种数据驱动的方法不需要通常用于传播引起的失真估计的参考信号,从而实现智能和方便的信号解码。由传感器阵列捕获的空间动态编码关于感兴趣信号的复杂信息,可以通过深度学习授权的信号解码来有效地学习。此外,如果环境中有多个人,深度学习算法将学习分离感兴趣的信号。深度学习算法将学习并使用目标用户的特定信号模式,以在捕获的多传感器信号中挖掘目标相关模式。建议的系统架构将进一步评估与现实世界的实验,以证明可推广的创新和系统的有效性。这一新颖的系统架构将为各种远程健康监测应用做出广泛贡献,通过普及和方便的大健康数据建立来促进国民健康,并促进用于高保真远程健康监测的深度传感器阵列解码科学。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qingxue Zhang其他文献
Estrogen-increased SGK1 Promotes Endometrial Stromal Cell Invasion in Adenomyosis by Regulating with LPAR2
雌激素增加的 SGK1 通过调节 LPAR2 促进子宫腺肌病子宫内膜基质细胞侵袭
- DOI:
10.1007/s43032-022-00990-3 - 发表时间:
2022-07 - 期刊:
- 影响因子:2.9
- 作者:
Yingchen Wu;Hao Wang;Yi Li;Yangzhi Li;Yihua Liang;Guangzheng Zhong;Qingxue Zhang - 通讯作者:
Qingxue Zhang
SPWID 2017
2017年SPWID
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Marius Silaghi;Lenka Lhotska;Christian Holz;Giovanni Albani;Jesús B. Alonso Hernández;Alessia Garofalo;Cosire Group;Italy Aversa;Vivian Genaro;Motti;Daniel Roggen;Ntt Japan Osamu Saisho;Jacob Scharcanski;Vicente Traver;C. Travieso;Hui Wu;Qingxue Zhang;Y. Kishino;Yoshinari Shirai;Koh Takeuchi;F. Naya;Naonori Ueda;Yin Chen;Takuro Yonezawa;Jin Nakazawa;M. Kawano;Tomotaka Ito - 通讯作者:
Tomotaka Ito
Artificial Intelligence-Enabled ECG Big Data Mining for Pervasive Heart Health Monitoring
- DOI:
10.1007/978-981-13-9097-5_12 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingxue Zhang - 通讯作者:
Qingxue Zhang
A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping
通过相域多视图动态时间扭曲进行运动耐受瞬时心率估计的新框架
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.6
- 作者:
Qingxue Zhang;Dian Zhou;Xuan Zeng - 通讯作者:
Xuan Zeng
DeepWave: Non-contact Acoustic Receiver Powered by Deep Learning to Detect Sleep Apnea
DeepWave:由深度学习驱动的非接触式声学接收器,用于检测睡眠呼吸暂停
- DOI:
10.1109/bibe50027.2020.00123 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Qingxue Zhang;R. Boente - 通讯作者:
R. Boente
Qingxue Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qingxue Zhang', 18)}}的其他基金
CAREER: Pyramidal Intelligence for Ultra-low-power Wearable Massive-sensor Computers
职业:超低功耗可穿戴大规模传感器计算机的金字塔智能
- 批准号:
2047849 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似海外基金
6G-REFERENCE: 6G haRdware Enablers For cEll fRee cohEreNt Communications & sEnsing
6G 参考:无细胞一致性通信的 6G 硬件推动者
- 批准号:
10096702 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
EU-Funded
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
- 批准号:
10662755 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
- 批准号:
2238976 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Development of reference-free algorithms for low coverage RNA-Seq characterization of cell states
开发用于细胞状态低覆盖率 RNA-Seq 表征的无参考算法
- 批准号:
RGPIN-2022-04260 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Using machine learning to identify active and druggable pathways in primary and metastatic cancers through reference-free pathway analysis
使用机器学习通过无参考途径分析来识别原发性和转移性癌症中的活性和可药物途径
- 批准号:
458984 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Studentship Programs
Cell-free DNA reference intervals and preanalytical variables
无细胞 DNA 参考区间和分析前变量
- 批准号:
17K08986 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reference-Free Crack Diagnosis Based on Polarization Characteristics of Smart Materials
基于智能材料偏振特性的无参考裂纹诊断
- 批准号:
0700411 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Reference Free Part Encapsulation: A New Universal Fixturing Technology
无参考零件封装:一种新的通用夹具技术
- 批准号:
9713902 - 财政年份:1997
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Dietary habits and diabetes mellitus - with special reference to carbohydrate in take
饮食习惯和糖尿病——特别是碳水化合物的摄入
- 批准号:
09470111 - 财政年份:1997
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Physiological roles of zinc in rice plants with reference to protein synthesis.
锌在水稻中对蛋白质合成的生理作用。
- 批准号:
07660080 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)