Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems

合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习

基本信息

  • 批准号:
    2317190
  • 负责人:
  • 金额:
    $ 27.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning has shown great promise in solving many open challenges in wireless networking research and applications. Deep learning is data hungry, and one of the critical obstacles towards fulfilling its promise is facilitating the acquisition of sufficient amounts of data to train and validate deep learning models. The primary goal of this project is to devise innovative approaches that enable wireless researchers and practitioners to acquire data more efficiently at reduced cost and to utilize existing data more effectively. Findings from this project are expected to fuel future breakthroughs in wireless research by making deep learning models more widely applicable. By integrating research and education, the proposed work will provide excellent hands-on exercises, research, and educational opportunities for undergraduate and graduate students at the three collaborating universities. The project will leverage the existing diversity-related outreach programs at the three institutions to broaden participation from under-represented groups. A team of four investigators with complementary expertise from Auburn University, Temple University, and California State University, Sacramento will carry out a coherent research agenda consisting of the following four thrusts: (1) Spectrum data synthesis and augmentation aided by generative adversarial networks; (2) Exploiting historical and synthetic wireless networking data through novel transfer learning algorithms; (3) Characterizing the relationship between dataset size and performance; (4) Integrate, validate and apply approaches developed in the first three thrusts on spectrum database construction, RF spectrum anomaly detection, and transmitter classification. Thrusts 1-3 are application-agnostic and focused on studying fundamental concepts and techniques that facilitate the acquisition of sufficient amounts of wireless data, enable more effective utilization of existing data, and enable the prediction of how much data is needed to meet desired performance. Thrust 4 is application-specific and focused on specific wireless applications where deep learning has been applied and demonstrated great potential. The data, software and education materials developed from this project will be widely disseminated. The project will engage industry stakeholders on project-related issues, with the aim to disseminate ideas and learn relevant challenges faced by the industry when applying deep learning to wireless applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习在解决无线网络研究和应用中的许多开放性挑战方面表现出了巨大的潜力。深度学习是数据饥渴型的,实现其承诺的关键障碍之一是促进获取足够数量的数据来训练和验证深度学习模型。该项目的主要目标是设计创新方法,使无线研究人员和从业人员能够以更低的成本更有效地获取数据,并更有效地利用现有数据。该项目的研究结果有望通过使深度学习模型更广泛地应用,推动无线研究的未来突破。通过整合研究和教育,拟议的工作将为三所合作大学的本科生和研究生提供出色的实践练习,研究和教育机会。该项目将利用这三个机构现有的与多样性有关的外联方案,扩大代表性不足群体的参与。一个由来自奥本大学、坦普尔大学和萨克拉门托的加州州立大学的四名研究人员组成的团队将开展一项连贯的研究议程,包括以下四个方面:(1)生成对抗网络辅助的频谱数据合成和增强;(2)通过新的转移学习算法利用历史和合成无线网络数据;(3)表征数据集大小与性能之间的关系;(4)整合、验证和应用在频谱数据库构建、RF频谱异常检测和发射机分类的前三个方面中开发的方法。重点1-3是应用不可知的,并专注于研究基本概念和技术,这些概念和技术有助于获取足够数量的无线数据,能够更有效地利用现有数据,并能够预测需要多少数据才能满足期望的性能。Thrust 4是针对特定应用的,专注于深度学习已经应用并展示出巨大潜力的特定无线应用。将广泛传播从这一项目中开发的数据、软件和教材。该项目将与行业利益相关者就项目相关问题进行交流,旨在传播想法,了解行业在将深度学习应用于无线应用时面临的相关挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Domain Adaptation for RF Fingerprinting Using Prototypical Networks
使用原型网络进行射频指纹识别的跨域适应
Adversarial Attack and Defense for WiFi-based Apnea Detection System
基于WiFi的呼吸暂停检测系统的对抗性攻击与防御
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuyu Wang其他文献

Biological invasions facilitate zoonotic disease emergences
  • DOI:
    https://doi.org/10.1038/s41467-022-29378-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lin Zhang;Jason Rohr;Ruina Cui;Yusi Xin;Lixia Han;Xiaona Yang;Shimin Gu;Yuanbao Du;Jing Liang;Xuyu Wang;Zhengjun Wu;Qin Hao;Xuan Liu
  • 通讯作者:
    Xuan Liu
Tailored oxygen defect coupling composition engineering CoxMn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation
定制的氧缺陷耦合组合物工程 CoxMn2O4 尖晶石中空纳米纤维可改善双酚 A 催化降解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Yutong Lu;Wuxiang Zhang;Fu Yang;Xuexue Dong;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan
  • 通讯作者:
    Aihua Yuan
Interfacial engineering of coupling tailored oxygen vacancies in CoxMn2O4 spinel hollow nanofiber to accelerate catalytic phenol removal
CoxMn2O4尖晶石空心纳米纤维中耦合定制氧空位的界面工程加速催化苯酚去除
  • DOI:
    10.1016/j.jhazmat.2021.127647
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Fu Yang;Yutong Lu;Xuexue Dong;Mengting Liu;Zheng Li;Wuxiang Zhang;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan
  • 通讯作者:
    Aihua Yuan
Backdoor Attacks Against Deep Learning-Based Massive MIMO Localization
针对基于深度学习的大规模 MIMO 定位的后门攻击
Anthropogenic habitat loss accelerates the range expansion of a global invader
人为栖息地丧失加速了全球入侵者的范围扩张
  • DOI:
    10.1111/ddi.13359
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xuyu Wang;Tao Yi;Wenhao Li;Chunxia Xu;Supen Wang;Yanping Wang;Yiming Li;Xuan Liu
  • 通讯作者:
    Xuan Liu

Xuyu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuyu Wang', 18)}}的其他基金

Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319343
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306791
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
  • 批准号:
    2321763
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
  • 批准号:
    2105416
  • 财政年份:
    2021
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2107164
  • 财政年份:
    2021
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了