Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements

合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法

基本信息

  • 批准号:
    2319343
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

With the increasing growth of large-scale, heterogeneous, dynamic, and complex wireless networks, how to achieve accurate and robust measurements in 5G networks and beyond becomes a challenging and important problem. Most existing data-driven solutions are black-box approaches, which may not be robust and adaptive, and work only for low-dimensional and discrete data. In fact, wireless data belong to the class of functional data, which can be represented by curves or functions. High-dimensional wireless datasets can be better handled by functional data analysis (FDA). Recognizing the significance of the aforementioned problems, this project aims to bridge the gap between FDA-based learning and wireless measurement. The proposed research falls into the following four interwoven thrusts. (i) Functional Data Regression for Sparse Wireless Measurements: to develop a deep learning based approach to address fundamental regression problems of functional data. (ii) FDA-based Transfer Learning for DynamicWireless Measurements: to study transfer learning for functional data regression and classification under the distribution shift between test data and training data for effective wireless measurements in dynamic environments. (iii) Quantile FDA-based Learning for Robust Wireless Measurements and Control: to develop a deep learning-based approach to address the fundamental bottleneck of quantile regression-based methods. (iv) Wireless Measurement Applications for Integration and Validation. If successful, this research will greatly advance the practice and understanding of functional data for wireless measurement and related fields. The educational and outreach components include: (i) Curriculum enhancement with learning theory and FDA, and joint developing a graduate course on FDA-based learning for wireless measurements. (ii) Engaging undergrads with hands-on projects. The existing outreach programs will be leveraged to offer research opportunities and seminars to undergrads, with emphasis on engaging underrepresented students. (iii) Outreach activities to increase public awareness, include journal publications, conference presentations, seminars, IEEE distinguished lectures, journal special issues, and workshops and special sessions at major conferences.The code produced from this project will be disseminated at the public repository GitHub (https://github.com/). A project website will be maintained at Auburn University with URL: https://www.eng.auburn.edu/~szm0001/proj_lMR23.html. This project website will be frequently and regularly updated for dissemination of the outcomes from this project, including a description of the project, project team, major outcomes such as publications, codes and datasets, as well as an acknowledgement of NSF support to this project. This website will be managed/updated by the PI for the three-year project period.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大规模、异构、动态和复杂的无线网络的日益增长,如何在5G网络及以后实现准确和鲁棒的测量成为一个具有挑战性的重要问题。大多数现有的数据驱动的解决方案是黑盒方法,这可能不是鲁棒性和自适应性,并且仅适用于低维和离散数据。实际上,无线数据属于函数数据类,可以用曲线或函数来表示。功能数据分析(FDA)可以更好地处理高维无线数据集。认识到上述问题的重要性,本项目旨在弥合基于FDA的学习和无线测量之间的差距。拟议的研究福尔斯分为以下四个相互交织的推力。(i)稀疏无线测量的函数数据回归:开发基于深度学习的方法来解决函数数据的基本回归问题。(ii)基于FDA的动态无线测量迁移学习:研究在测试数据和训练数据之间的分布偏移下,用于功能数据回归和分类的迁移学习,以实现动态环境中的有效无线测量。(iii)基于分位数FDA的学习,用于稳健的无线测量和控制:开发基于深度学习的方法,以解决基于分位数回归的方法的根本瓶颈。(iv)用于集成和验证的无线测量应用。如果成功的话,这项研究将大大推进无线测量和相关领域的实践和理解的功能数据。教育和外联部分包括:㈠利用学习理论和FDA加强课程设置,并联合开发一门基于FDA的无线测量学习研究生课程。(ii)让本科生参与动手项目。现有的推广计划将被利用,以提供研究机会和研讨会的本科生,重点是从事代表性不足的学生。(iii)提高公众意识的外联活动包括期刊出版物、会议演讲、研讨会、IEEE杰出讲座、期刊特刊以及研讨会和主要会议的特别会议。该项目产生的代码将在公共存储库GitHub(https://github.com/)上传播。奥本大学将维护一个项目网站,网址为:https://www.eng.auburn.edu/~szm0001/proj_lMR23.html。该项目网站将经常定期更新,以传播该项目的成果,包括项目描述、项目团队、主要成果(如出版物、代码和数据集)以及NSF对该项目的支持。本网站将由PI在三年的项目期内管理/更新。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuyu Wang其他文献

Biological invasions facilitate zoonotic disease emergences
  • DOI:
    https://doi.org/10.1038/s41467-022-29378-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lin Zhang;Jason Rohr;Ruina Cui;Yusi Xin;Lixia Han;Xiaona Yang;Shimin Gu;Yuanbao Du;Jing Liang;Xuyu Wang;Zhengjun Wu;Qin Hao;Xuan Liu
  • 通讯作者:
    Xuan Liu
Tailored oxygen defect coupling composition engineering CoxMn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation
定制的氧缺陷耦合组合物工程 CoxMn2O4 尖晶石中空纳米纤维可改善双酚 A 催化降解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Yutong Lu;Wuxiang Zhang;Fu Yang;Xuexue Dong;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan
  • 通讯作者:
    Aihua Yuan
Interfacial engineering of coupling tailored oxygen vacancies in CoxMn2O4 spinel hollow nanofiber to accelerate catalytic phenol removal
CoxMn2O4尖晶石空心纳米纤维中耦合定制氧空位的界面工程加速催化苯酚去除
  • DOI:
    10.1016/j.jhazmat.2021.127647
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Fu Yang;Yutong Lu;Xuexue Dong;Mengting Liu;Zheng Li;Wuxiang Zhang;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan
  • 通讯作者:
    Aihua Yuan
Backdoor Attacks Against Deep Learning-Based Massive MIMO Localization
针对基于深度学习的大规模 MIMO 定位的后门攻击
Anthropogenic habitat loss accelerates the range expansion of a global invader
人为栖息地丧失加速了全球入侵者的范围扩张
  • DOI:
    10.1111/ddi.13359
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xuyu Wang;Tao Yi;Wenhao Li;Chunxia Xu;Supen Wang;Yanping Wang;Yiming Li;Xuan Liu
  • 通讯作者:
    Xuan Liu

Xuyu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuyu Wang', 18)}}的其他基金

Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306791
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
  • 批准号:
    2321763
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2317190
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
  • 批准号:
    2105416
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2107164
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319367
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319486
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2344341
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319421
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319488
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319342
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319422
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
  • 批准号:
    2319603
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319368
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了