ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
基本信息
- 批准号:2317176
- 负责人:
- 金额:$ 19.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This Engineering Research Initiation (ERI) award will focus on the characterization of near-surface wind fields to investigate the effectiveness of roof load mitigation strategies for low-rise buildings. Wind-induced damage to roof components of low-rise buildings is predominantly attributed to extreme suction loads caused by vortices that develop when the oncoming wind flow impinges on the structure, resulting in flow detachment near roof corners and edges. Previous research has demonstrated the effectiveness of several wind mitigation strategies for alleviating uplift roof pressures under a limited number of idealized wind tunnel flow conditions. This research will leverage a novel flow-control instrument at the University of Florida Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facility to physically simulate a wide range of atmospheric flows in a large boundary layer wind tunnel. The project will integrate machine learning and computational modeling to predict extreme wind loading for unexplored wind tunnel configurations and fill critical knowledge gaps associated with the complex relation between atmospheric turbulence and aerodynamic loading. The large volumes of velocity and pressure data will be made available in the NHERI Data Depot (https://www.DesignSafe-ci.org). The research will address fundamental fluid-structure interaction questions while enhancing the performance of roof systems, and ultimately contribute to increasing wind hazard resilience of low-rise buildings. This award will contribute to the National Science Foundation role in the National Windstorm Impact Reduction Program (NWIRP). The specific goals of this research include: (i) the physical characterization of natural wind flows with precisely modulated frequency content, including low-frequency (large-scale) turbulence, which is traditionally deficient in wind tunnel tests conducted on large low-rise building models; (ii) experimental assessment of roof uplift load mitigation strategies for low-rise buildings tested under a wide range of properly calibrated upwind terrain conditions and large-scale turbulent structures; (iii) development and refinement of a deep neural network (DNN) to map complex relationships between incident turbulence and the effectiveness of wind mitigation strategies for reducing peak suction loads; and (iv) the calibration of numerical inflow turbulence models using high-fidelity flow velocity and pressure wind tunnel data. The datasets will offer a reliable calibration tool to enhance the accuracy of numerical models, and ultimately help advance computational wind engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。 该工程研究启动(ERI)奖将侧重于近地面风场的表征,以调查低层建筑屋顶荷载缓解策略的有效性。低层建筑物屋顶构件的风致破坏主要归因于迎面气流撞击结构时产生的涡流引起的极端吸力载荷,导致屋顶拐角和边缘附近的气流分离。先前的研究已经证明了在有限数量的理想风洞流动条件下,几种减缓风的策略对于减轻上拔屋顶压力的有效性。这项研究将利用佛罗里达大学自然灾害工程研究基础设施(NHERI)实验设施的一种新型流量控制仪器,在大型边界层风洞中物理模拟大范围的大气流动。该项目将整合机器学习和计算建模,以预测未探索的风洞配置的极端风载荷,并填补与大气湍流和空气动力学载荷之间复杂关系相关的关键知识空白。大量的速度和压力数据将在NHERI数据库(https://www.example.com)中提供。www.DesignSafe-ci.org该研究将解决基本的流体-结构相互作用问题,同时提高屋顶系统的性能,并最终有助于提高低层建筑的风灾抵御能力。该奖项将有助于国家科学基金会在国家减少风暴影响计划(NWIRP)中的作用。 这项研究的具体目标包括:(一)自然风的物理特性与精确调制的频率内容,包括低频(大尺度)湍流,这是传统上在大型低层建筑模型上进行的风洞试验所缺乏的;(ii)对低-在各种适当校准的逆风地形条件和大尺度湍流结构下测试的高层建筑;(iii)开发和完善深度神经网络(DNN)绘制入射湍流与减少峰值吸力载荷的风力缓解策略的有效性之间的复杂关系;以及(iv)使用高保真流速和压力风洞数据校准数值流入湍流模型。该数据集将提供一个可靠的校准工具,以提高数值模型的准确性,并最终帮助推进计算风工程。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generation of Large-Scale Gust Structures in a Large Boundary Layer Wind Tunnel: 3D Flow Measurement Experiments
在大型边界层风洞中生成大型阵风结构:3D 流量测量实验
- DOI:10.17603/ds2-0m8r-my92
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mokhtar, Nasreldin O.;Fernández-Cabán, Pedro L.;Catarelli, Ryan A.
- 通讯作者:Catarelli, Ryan A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Fernandez-Caban其他文献
Pedro Fernandez-Caban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Fernandez-Caban', 18)}}的其他基金
CAREER: Fusing Meta-Learning Systems and Field Observations to Enhance the Simulation of Extreme Winds and their Impact on Civil Infrastructure
职业:融合元学习系统和现场观测,增强极端风及其对民用基础设施影响的模拟
- 批准号:
2339437 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
- 批准号:
2138414 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
相似国自然基金
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
MRI: Track 1 Acquisition of a Real-Time Hybrid Simulation Testing System for Cyber-Physical Research and Training
MRI:轨道 1 获取用于网络物理研究和培训的实时混合仿真测试系统
- 批准号:
2320379 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Cyber-physical Distributed Simulation of Intelligent Transportation Systems
智能交通系统的信息物理分布式仿真
- 批准号:
RGPIN-2018-06882 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Experimental investigation of physical-space scalar structure and unresolved mixing to improve large-eddy simulation of turbulent combustion
EAGER:物理空间标量结构和未解决的混合的实验研究,以改进湍流燃烧的大涡模拟
- 批准号:
2208136 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Simulation and Education Tool for Physical Examinations of Orthopedic Pathologies
用于骨科病理体检的模拟和教育工具
- 批准号:
10484180 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
- 批准号:
2138414 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
IRES Track I: Computational Co-Design of Physical Systems with Embodied Intelligence by Integrating Data, Simulation, and User Interface
IRES Track I:通过集成数据、仿真和用户界面,实现具有体现智能的物理系统的计算协同设计
- 批准号:
2153560 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant