CAREER: Fusing Meta-Learning Systems and Field Observations to Enhance the Simulation of Extreme Winds and their Impact on Civil Infrastructure

职业:融合元学习系统和现场观测,增强极端风及其对民用基础设施影响的模拟

基本信息

  • 批准号:
    2339437
  • 负责人:
  • 金额:
    $ 54.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) award will fund research that intends to advance fundamental understanding of the site-dependent nature of extreme wind fields occurring during hurricanes and their impact on the built environment. The research is motivated by the palpable differences between ground-level wind observations collected during field research activities and the idealized wind flow conditions simulated in traditional boundary layer wind tunnels. This research will leverage meta-learning systems, full-scale anemometric data collected during landfalling hurricanes, and high-throughput experimental testing to simulate real-world wind hazard conditions and their interaction with complex terrain features of coastal communities. The award will expand the geospatial coverage of inherently sparse ground-based anemometric measurements to support post-storm field reconnaissance teams in synthesizing observed structural damage to site-specific wind hazard conditions. The research will be integrated with educational and public engagement activities, including the development of learning modules to accelerate the implementation of artificial intelligence-based tools into civil engineering curricula, hosting Learning-to-Learn (L2L) workshops for middle and high school students from the City of Tallahassee, and fostering public and stakeholder engagement from coastal communities in the Florida Panhandle. Data generated from this project will be archived and made publicly available in the Natural Hazards Engineering Research Infrastructure (NHERI) Data Depot (https:/www.DesignSafe-c.org). This award will contribute to the National Science Foundation's role in the National Windstorm Impact Reduction Program (NWIRP).The research activities are intended to drive broader societal outcomes that directly address enduring challenges related to the nation's ability to mitigate and adapt to the ever-changing threat of extreme wind hazard events. The specific goals of this research include (i) the recreation of real-world hurricane wind records at multiple geometric scales using a multi-fan flow-control instrument, (ii) the physical simulation of real-world terrain morphology of coastal communities using high-resolution digital surface models (DSM), (iii) the integration of meta-learning algorithms to extract salient features of distal and proximate terrain characteristics that influence ground-level hurricane winds, and (iv) the development of a site-specific wind (component- and building-level) load inference tool based on realistic wind flow traces. The experimental work will utilize the NHERI Boundary Layer Wind Tunnel at the University of Florida.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展奖将资助旨在促进对飓风期间发生的极端风场的场地依赖性及其对建筑环境影响的基本理解的研究。这项研究的动机是在实地研究活动中收集的地面风观测与传统边界层风洞模拟的理想化风流条件之间存在明显差异。这项研究将利用元学习系统、登陆飓风期间收集的全尺度风速数据和高通量实验测试来模拟真实世界的风灾条件及其与沿海社区复杂地形特征的相互作用。该奖项将扩大固有稀疏的地面风速测量的地理空间覆盖范围,以支持风暴后实地勘察小组将观测到的结构性破坏综合到特定地点的风灾条件下。这项研究将与教育和公共参与活动相结合,包括开发学习模块,以加快将基于人工智能的工具落实到土木工程课程中,为塔拉哈西市的初中生和高中生举办学习到学习(L2L)研讨会,并促进佛罗里达州狭长地带沿海社区的公众和利益攸关方参与。该项目产生的数据将被存档,并在自然灾害工程研究基础设施(NHERI)数据仓库(http://www.DesignSafe-c.org)中公开提供。这一奖项将有助于国家科学基金会在国家减少风灾影响计划(NWIRP)中发挥作用。研究活动旨在推动更广泛的社会成果,直接应对与国家缓解和适应极端风灾事件不断变化的威胁的能力相关的持久挑战。这项研究的具体目标包括(I)使用多扇流量控制仪器在多个几何尺度上重建真实世界飓风风记录,(Ii)使用高分辨率数字地面模式(DSM)对真实世界沿海社区的地形形态进行物理模拟,(Iii)整合元学习算法以提取影响地面飓风风的远端和近端地形特征的显著特征,以及(Iv)基于真实风流轨迹开发特定地点的风(组件和建筑物级别)负荷推断工具。这项实验工作将利用佛罗里达大学的NHERI边界层风洞。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedro Fernandez-Caban其他文献

Pedro Fernandez-Caban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedro Fernandez-Caban', 18)}}的其他基金

ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2317176
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2138414
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Standard Grant

相似海外基金

Sensoron: Fusing Memory and Computing into Spintronics-based Sensors
Sensoron:将内存和计算融合到基于自旋电子学的传感器中
  • 批准号:
    23K22808
  • 财政年份:
    2024
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Sensing Music Interactions from the Outside-In: Accessible Innovation Fusing Wearable Technology and Physical Prototyping
从外到内感知音乐交互:融合可穿戴技术和物理原型的无障碍创新
  • 批准号:
    MR/X036103/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Fellowship
Zeroshot learning of real-world AI by fusing large deep learning models and 3D virtual world
通过融合大型深度学习模型和 3D 虚拟世界,实现现实世界人工智能的零射击学习
  • 批准号:
    23H03426
  • 财政年份:
    2023
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Targeted Infusion Project: Fusing Social Science and Forensics to Enhance Preparedness for Modern Criminal Justice Careers
有针对性的注入项目:融合社会科学和法医学,加强对现代刑事司法职业的准备
  • 批准号:
    2306450
  • 财政年份:
    2023
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Standard Grant
PROFUSE: Fusing brain and computational mechanisms of prosocial behaviour across health, development and disorder
PROFUSE:融合健康、发育和疾病等亲社会行为的大脑和计算机制
  • 批准号:
    EP/X020215/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Research Grant
Fusing a future from Glasgow’s proud heritage: Schedule Guaranteed High-Integrity Structures for a Secure, Safe and Resilient Transition to Net Zero
融合格拉斯哥引以为傲的传统的未来:时间表保证的高完整性结构,以安全、安全和有弹性地过渡到净零
  • 批准号:
    10054861
  • 财政年份:
    2023
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Collaborative R&D
fusing MEDICAL IMAGES and CFD for precision VASCULAR INTERVENTIONS (MEDICARE)
融合医学图像和 CFD 以实现精准血管干预 (医疗保健)
  • 批准号:
    BB/X005062/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Research Grant
Development and its evaluation of an ensemble performance system by fusing of melody morphing and body movements
旋律变形与肢体动作融合的合奏表演系统的开发与评估
  • 批准号:
    22K17942
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
  • 批准号:
    10573293
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
Sensoron: Fusing Memory and Computing into Spintronics-based Sensors
Sensoron:将内存和计算融合到基于自旋电子学的传感器中
  • 批准号:
    22H01538
  • 财政年份:
    2022
  • 资助金额:
    $ 54.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了