NSF-BSF: AF: Small: New directions in geometric traversal theory

NSF-BSF:AF:小:几何遍历理论的新方向

基本信息

项目摘要

Computational geometry is the branch of theoretical computer science devoted to the design, analysis, and implementation of geometric algorithms and data structures. Geometry is omnipresent: geometric problems arise naturally in any computational field that simulates or interacts with the physical world. The planned research focuses on the fundamental problem of clustering data by taking a geometric viewpoint of the problem. The project will study what are the geometric conditions that are required and sufficient to cluster the data, and how to quickly check for these conditions, and cluster the data.The problems to be studied in this project include: (i) sufficient conditions for data to be clustered (i.e., traversed) using a few "centers", where a center is either several points, or higher dimensional spaces such as lines (i.e., projective clustering). (ii) Approximating the number of centers needed to cluster, and trying to improve the number of clusters needed. (iii) Coverage problems – can the data be covered by a few slabs/cylinders/etc.? Can such cover be computed efficiently and quickly? (iv) Finding a small subset of the data that can be clustered instead of the whole point set and, importantly, providing a proof that no better clustering is possible with fewer centers. The project aims to develop algorithms to compute such sets efficiently.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算几何形状是理论计算机科学的分支,该分支致力于几何算法和数据结构的设计,分析和实施。几何是无所不在的:几何问题自然出现在模拟或与物理世界相互作用的任何计算领域中。计划研究的重点是通过采用该问题的几何观点来群集数据的基本问题。 The project will study what are the geometric conditions that are required and sufficient to cluster the data, and how to quickly check for these conditions, and cluster the data.The problems to be studied in this project include: (i) sufficient conditions for data to be clustered (i.e., traversed) using a few "centers", where a center is either several points, or higher dimensional spaces such as lines (i.e., projective clustering). (ii)近似聚类所需的中心数,并试图改善所需的簇数。 (iii)覆盖范围问题 - 数据可以由几个平板/气缸/等覆盖吗?可以有效,快速计算此类覆盖物吗? (iv)找到一小部分数据子集可以聚集,而不是整个点集,并且重要的是提供一个证据表明,在中心较少的情况下不可能进行更好的聚类。该项目旨在开发算法以有效地计算此类集合。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sariel Har-Peled其他文献

A replacement for Voronoi diagrams of near linear size
Shortest path in a polygon using sublinear space
  • DOI:
    10.20382/jocg.v7i2a3
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har-Peled
  • 通讯作者:
    Sariel Har-Peled
Chapter 25 Duality
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har-Peled
  • 通讯作者:
    Sariel Har-Peled
Chapter 6 Sampling and the Moments Technique
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har-Peled
  • 通讯作者:
    Sariel Har-Peled
Approximate Nearest Neighbors
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har-Peled
  • 通讯作者:
    Sariel Har-Peled

Sariel Har-Peled的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sariel Har-Peled', 18)}}的其他基金

AF: Small: Towards Sturdier Geometric Algorithms
AF:小:迈向更坚固的几何算法
  • 批准号:
    1907400
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
AF: Small: Towards better geometric algorithms: Summarizing, partitioning and shrinking data
AF:小:迈向更好的几何算法:汇总、分区和缩小数据
  • 批准号:
    1421231
  • 财政年份:
    2014
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
AF: Small: Efficient Proximity and Similarity Search in Computational Geometry
AF:小:计算几何中的高效邻近性和相似性搜索
  • 批准号:
    1217462
  • 财政年份:
    2012
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
AF: Small: Approximation, Covering and Clustering in Computational Geometry
AF:小:计算几何中的近似、覆盖和聚类
  • 批准号:
    0915984
  • 财政年份:
    2009
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
CAREER: Approximation Algorithms for Geometric Computing
职业:几何计算的近似算法
  • 批准号:
    0132901
  • 财政年份:
    2002
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
  • 批准号:
    2321079
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Advancing Coding Theory Through the Lens of Pseudorandomness
NSF-BSF:AF:小:通过伪随机性的视角推进编码理论
  • 批准号:
    2231157
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2247576
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2247577
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了