Building-Block-Flow Model for Large-Eddy Simulation

用于大涡模拟的积木流模型

基本信息

  • 批准号:
    2317254
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Computational fluid dynamics stands as an essential tool for the design and optimization of aerodynamic/hydrodynamic vehicles. It is estimated that the impact of reducing transportation drag by 5% would be equivalent to that of doubling the US wind energy production. However, computational predictions of fluid flows around realistic vehicles poses a unique challenge due to the ubiquity of complex flow physics, including adverse pressure-gradient effects, flow separation, and laminar-to-turbulent transition. While some computational models predict one or two scenarios, no model performs accurately across all flow phenomena. This project will seek to devise a unified closure model for computational fluid dynamics capable of accounting for a rich collection of flow physics. The goals of this project are to couple fundamental physics and machine-learning modeling for a new computational fluids model. The project also leverages existing programs to promote diversity and inclusion in engineering, including participation in annual summer research programs and undergraduate research opportunities to engage women and underrepresented minorities.The core assumption of the closure model proposed is that a finite set of simple canonical flows contains the essential physics to predict more complex scenarios. The approach is implemented using artificial neural networks with large-eddy simulation and brings together five unique advances: (1) the model is directly applicable to arbitrary complex geometries, (2) it is constructed to predict different flow regimes (zero/favorable/adverse mean-pressure-gradient wall turbulence, separation, statistically unsteady turbulence with mean-flow three-dimensionality, and laminar flow), (3) the model can be scaled-up to capture additional flow physics if needed (e.g., shock waves), (4) the model guarantees consistency with the numerical discretization and the gridding strategy by compensating for numerical errors, and (5) the output of the model is accompanied by a confidence score in the prediction used for uncertainty quantification and grid refinement. The cases of study range from canonical flat plate turbulence to complex flows such as realistic aircraft configurations. The foundations established in this work will enable new venues to model multiple flow regimes in computational fluid dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算流体动力学是空气动力/流体动力飞行器设计和优化的重要工具。据估计,减少5%的运输阻力的影响将相当于美国风能产量翻一番。然而,由于复杂的流动物理现象的普遍存在,包括不利的压力梯度效应,流动分离,层流到湍流过渡,现实车辆周围的流体流动的计算预测提出了一个独特的挑战。虽然一些计算模型预测一个或两个场景,没有模型准确地执行所有的流动现象。这个项目将寻求为计算流体力学设计一个统一的封闭模型,能够解释丰富的流动物理学。该项目的目标是将基础物理和机器学习建模结合起来,构建新的计算流体模型。该项目还利用现有的计划,以促进工程的多样性和包容性,包括在每年的夏季研究计划和本科生的研究机会,让妇女和代表性不足的少数民族参与的参与。关闭模型的核心假设是,一个有限的简单规范流的集合包含基本的物理预测更复杂的情况。该方法使用具有大涡模拟的人工神经网络实现,并汇集了五个独特的进步:(1)该模型可直接应用于任意复杂的几何形状,(2)它被构造为预测不同的流态(零/有利/不利平均压力梯度壁湍流、分离、具有平均流三维性的统计非定常湍流和层流),(3)如果需要,模型可以按比例放大以捕获附加的流动物理(例如,冲击波),(4)该模型通过补偿数值误差来保证与数值离散化和网格化策略的一致性,以及(5)该模型的输出伴随有用于不确定性量化和网格细化的预测中的置信度得分。研究的情况范围从典型的平板湍流复杂的流动,如现实的飞机配置。在这项工作中建立的基础将使新的场地能够模拟计算流体力学中的多种流态。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Lozano-Duran其他文献

Adrian Lozano-Duran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Lozano-Duran', 18)}}的其他基金

CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
  • 批准号:
    2140775
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

安氏II类1分类伴下颌后缩生长发育期患者Twin Block矫治后上气道反应的流体动力学仿真模拟
  • 批准号:
    81571010
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Block 型无穷维李代数在Toda系统中的应用
  • 批准号:
    11201251
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
应用常染色体单倍域(Haplotype Block)研究中国人群的遗传结构
  • 批准号:
    30571060
  • 批准年份:
    2005
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
客家人G6PD基因位点Haplotype Block的研究
  • 批准号:
    30470949
  • 批准年份:
    2004
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Accelerated discovery and development of functionalised block copolymers using continuous-flow anionic polymerisation platforms
使用连续流阴离子聚合平台加速功能化嵌段共聚物的发现和开发
  • 批准号:
    2665495
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Reconciling the Concept of Time Flow with the Static Block Universe
协调时间流的概念与静态块宇宙
  • 批准号:
    2422461
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Research of the protective strategy against spinal cord ischemia focus on an increase in spinal cord blood flow due to sympathetic blockade upon paravertebral block.
脊髓缺血保护策略的研究重点是椎旁阻滞时交感神经阻滞导致的脊髓血流量增加。
  • 批准号:
    20K09244
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of low-temperature flow of biodegradable block copolymers under pressure
阐明可生物降解嵌段共聚物在压力下的低温流动
  • 批准号:
    20K05633
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Diagnostic, PCR-based Test to Detect SARS-CoV2 RNA (COVID-19): Solving the Global Shortage of the Key Organic Building Block Using Flow Chemistry
基于 PCR 的诊断性检测 SARS-CoV2 RNA (COVID-19):利用流动化学解决全球关键有机构件的短缺问题
  • 批准号:
    554166-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Alliance Grants
Estimation method of groundwater origin in a landslide block based on snowmelt effect and regional groundwater flow system
基于融雪效应和区域地下水流系统的滑坡体地下水来源估算方法
  • 批准号:
    25892030
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a "building block" model for flow of fluids in petroleum reservoirs
开发石油储层流体流动的“积木”模型
  • 批准号:
    256366-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 32万
  • 项目类别:
    Industrial Research Fellowships
Development of a "building block" model for flow of fluids in petroleum reservoirs
开发石油储层流体流动的“积木”模型
  • 批准号:
    256366-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 32万
  • 项目类别:
    Industrial Research Fellowships
Development of a "building block" model for flow of fluids in petroleum reservoirs
开发石油储层流体流动的“积木”模型
  • 批准号:
    256366-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 32万
  • 项目类别:
    Industrial Research Fellowships
Flow behaviour and strain induced morphology development of di- and star shaped block copolymers with lamellar structure.
具有层状结构的二元和星形嵌段共聚物的流动行为和应变诱导形态发展。
  • 批准号:
    5269246
  • 财政年份:
    2001
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了