NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
基本信息
- 批准号:2317583
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The bell-shaped curve, known technically as the Gaussian probability density function (pdf), has been a central element in engineering and financial algorithms that process data and automate a desired operation. However, it has been well recognized that reliance on the Gaussian pdf can be overly simplistic, since many practical systems in engineering, economics, biology, financial movements, earthquakes, atmospheric turbulence, etc., are poorly described by Gaussian pdfs. It was demonstrated that those phenomena are better described by “heavy-tailed” pdfs. For example, in air traffic control, an active radar measures the distance and bearing of an aircraft in a dynamic environment. These measurements are not exact, having an uncertainty or error in their values. This uncertainty is not described well by the Gaussian pdf because the portion of the bell-shaped curve far from its peak, called the tail of the pdf, is far smaller than what the radar data would suggest; the Gaussian-shaped bell curve is known to have a light, rapidly (exponentially) decaying tail, while radar data is said to have a heavy tail, decaying inversely to an algebraic power. Currently, only linear dynamic systems with additive Gaussian uncertainties have resulted in a recursive and analytic algorithm that allows tractable, real-time implementations. The engineering literature is packed with heuristic variations of this algorithm. Hence, a new rigorous algorithm is needed.Our newly developed recursive and analytic estimation algorithm, based on a very heavy-tailed Cauchy pdf, is a paradigm shift. Since the Cauchy pdf tail over-bounds other realistic densities, estimators and controllers that are based on the Cauchy pdf are hypothesized to be robust to unknown realistic physical densities. We refer to robustness in the statistical sense, meaning that the estimator achieves adequate performance when faced with outliers or unexplained events, and where these events may arise either as large measurement errors, large process deviations, or due to misspecification of the dynamic model. Numerical experiments have demonstrated this robustness. Since extreme data is assumed likely, the Cauchy estimator is rich in structure and hence is computationally more intense than its Gaussian counterparts. We are addressing new analytic techniques to make the computation streamlined and have implemented this Cauchy estimator on general purpose graphical processing units. Our study also focuses on new stochastic control laws. Because our estimator is analytic and recursive, new stochastic cost criteria can be formulated, leading to a host of new stochastic controllers and, in general, new control technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
钟形曲线,技术上称为高斯概率密度函数(pdf),一直是工程和金融算法的核心元素,处理数据并自动化所需的操作。然而,人们已经认识到,依赖高斯pdf可能过于简单化,因为工程、经济、生物、金融运动、地震、大气湍流等中的许多实际系统,高斯分布的概率密度函数描述得很差。结果表明,这些现象更好地描述了“重尾”的PDF。例如,在空中交通管制中,主动雷达测量动态环境中飞机的距离和方位。这些测量并不精确,其值存在不确定性或误差。这种不确定性不能用高斯概率密度函数很好地描述,因为钟形曲线远离峰值的部分,称为概率密度函数的尾部,远小于雷达数据所显示的;高斯钟形曲线被认为有一个轻的,快速(指数)衰减的尾部,而雷达数据被认为有一个重的尾部,与代数幂成反比衰减。目前,只有线性动态系统与加性高斯不确定性导致了递归和分析算法,允许听话,实时实现。工程文献中充满了这种算法的启发式变体。因此,需要一个新的严格的算法。我们新开发的递归和解析估计算法,基于一个非常重尾柯西pdf,是一个范式转变。由于柯西pdf尾部超出了其他现实的密度,估计器和控制器的基础上的柯西pdf假设是强大的未知的现实的物理密度。我们指的是统计意义上的鲁棒性,这意味着当面临离群值或无法解释的事件时,估计器实现了足够的性能,并且这些事件可能会出现大的测量误差,大的过程偏差,或由于动态模型的错误指定。数值实验证明了这种鲁棒性。由于极端数据被假设为可能的,柯西估计量在结构上是丰富的,因此在计算上比高斯估计量更密集。我们正在解决新的分析技术,使计算简化,并实现了通用图形处理单元上的柯西估计。我们的研究也集中在新的随机控制律。由于我们的估计是分析和递归的,新的随机成本标准可以制定,导致主机的新的随机控制器,一般来说,新的控制technology.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Speyer其他文献
Texture Chromeleon - A Toolkit for Quick and Rich Electrovibration Texture Rendering
纹理 Chromeleon - 用于快速且丰富的电振动纹理渲染的工具包
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Professor Trevor Cai;Yang Zhang;Ankur Mehta;Sergio Carbajo;Brittany Lu;Tiffany Chang;Sanjay Mohanty;Wendy Chau;Megan Chen;Professor Lev Tauz;Lara Dolecek;Kenneth Chu;Swetha Palakur;Boliang Wu;Ke Sheng;Lihua Jin;Thomas Chu;A. Graening;Puneet Gupta;Nicola Conta;Angela Duran;Kunal Kulkarni;Melissa Cruz;Alex Deal;Mark Diamond;Andrew Krupien;Shawn Mosharaf;K. Arisaka;Results Kunal;Kulkarni;C. Eisler;Mounika Dudala;Daniel Katz;Leonna Gaither;Nader Sehatbakhsh;Justin Feng;Timothy Jacques;Chandrashekhar J. Joshi;S. Tochitsky;D. Matteo;Lana Lim;Jason Speyer;Nat Snyder;R. Wesel;Linfang Wang;V. Prabhu;Shamik Sarkar;D. Cabric;Katherine Sohn;Benjamin A. Pound;Rob Candler;Robert Yang;Jyotirmoy Mandal;A. Raman - 通讯作者:
A. Raman
Jason Speyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Speyer', 18)}}的其他基金
Robust Estimation and Control of Dynamic Systems Experiencing Large Random Outliers
经历大随机异常值的动态系统的鲁棒估计和控制
- 批准号:
1934467 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
NSF/ENG/ECCS-BSF: Vector-State Estimation and Control for Linear Systems with Additive Heavy-Tailed Distributions
NSF/ENG/ECCS-BSF:具有加性重尾分布的线性系统的矢量状态估计和控制
- 批准号:
1607502 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Engineering Research Equipment Grant: Upgrade of Existing Computer Equipment
工程研究设备补助金:现有计算机设备的升级
- 批准号:
8806175 - 财政年份:1988
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant