Flux Mediated Synthesis of Cu(I)-Oxide Semiconductors for Clean Energy Application
用于清洁能源应用的通量介导合成氧化铜 (I) 半导体
基本信息
- 批准号:2317605
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Part 1. Non-Technical Summary Many technologically relevant fields require increasingly complex materials that pose severe challenges in their preparation and development. The limitations of current synthetic approaches thus represent a major bottleneck to the extensive tuning of physical properties and for the realization of potential commercial applications. This project, supported by the Solid State and Materials Chemistry program in NSF's Division of Materials Research, addresses the challenges inherent to the preparation of crystalline semiconductors for facilitating the efficient capture of sunlight for the reduction of carbon dioxide. Results from this work leading to the synthesis of new semiconductors, and, for example, the efficient production of chemical fuels from them, are important to our nation's progress toward clean and renewable energy production. The discovery of compounds occurring at the limits of synthesizability is aimed at understanding the impacts of new structural features on their properties and stability during the capture and conversion of solar energy, and thus pushing the frontiers of structure-property relationships. More broadly, the advancement of synthetic approaches to prepare complex semiconductors helps to accelerate their technological development for many related applications in the electronics industry. The professional training of undergraduate and graduate students is provided within these research activities, such as advanced characterization techniques at national laboratories, with a focus on the recruitment of students from underrepresented groups. Educational efforts include the development of an undergraduate laboratory module as well as a professional training workshop at North Carolina State University in advanced materials characterization.Part 2. Technical SummaryAdvancing capabilities to attain crystalline solids with technologically useful properties can be bolstered by the development of synthetic approaches to target new compositions and structures that are thermodynamically unstable, or metastable. The discovery of the underlying factors leading to their kinetic stabilization, including for those compounds not yet predicted computationally, represents a central objective of the research project. Research plans for this project, which is supported by the Solid State and Materials Chemistry program in NSF's Division of Materials Research, specifically focus on the investigation of metastable, Cu(I)-containing semiconductors that have promising applications as p-type semiconductors for the absorption of solar energy and the catalytic reduction of carbon dioxide at their surfaces. Synthetic aspects are aimed at advancing the accessible range of crystalline structures and optimal photoelectrochemical properties through the unlocking of relatively low temperature pathways using flux-mediated reaction conditions. Structural characterization by X-ray and neutron scattering is used to help answer key questions regarding the mechanistic synthetic transformations and the resulting kinetic stability. Fundamental insights into the optimal tuning of their crystalline structures and chemical compositions to achieve the efficient reduction of carbon dioxide under sunlight are probed in depth by photoelectrochemical property measurements. The key relationships to their thermodynamic instability and electronic structures are also established with synergistic computational efforts using density functional theory. Educational initiatives include professional training for students involved on this project, a new undergraduate laboratory module in solid-state chemistry, and an annual workshop in materials characterization using Rietveld methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
部分1. 许多技术相关领域需要越来越复杂的材料,这对材料的制备和开发提出了严峻的挑战。 因此,目前的合成方法的局限性代表了物理性质的广泛调整和实现潜在的商业应用的主要瓶颈。 该项目由NSF材料研究部门的固态和材料化学计划支持,解决了制备晶体半导体所固有的挑战,以促进有效捕获阳光,减少二氧化碳。 这项工作的结果导致合成新的半导体,例如,从它们中有效生产化学燃料,对我们国家向清洁和可再生能源生产的进步至关重要。 在可合成性极限下发现化合物的目的是了解新的结构特征在太阳能捕获和转换过程中对其性质和稳定性的影响,从而推动结构-性质关系的前沿。 更广泛地说,制备复杂半导体的合成方法的进步有助于加速电子工业中许多相关应用的技术发展。 在这些研究活动范围内对本科生和研究生进行专业培训,例如在国家实验室进行高级表征技术培训,重点是从代表性不足的群体中招收学生。 教育工作包括在北卡罗来纳州州立大学开发一个本科生实验室模块以及一个高级材料表征专业培训讲习班。技术概述通过开发合成方法以靶向化学不稳定或亚稳定的新组合物和结构,可以提高获得具有技术上有用的性质的结晶固体的能力。 发现导致其动力学稳定的潜在因素,包括尚未通过计算预测的化合物,是该研究项目的中心目标。该项目的研究计划由NSF材料研究部门的固态和材料化学计划支持,特别关注亚稳态含Cu(I)半导体的研究,这些半导体具有作为p型半导体的应用前景,用于吸收太阳能和在其表面催化还原二氧化碳。合成方面的目的是通过使用通量介导的反应条件解锁相对低温的途径来推进晶体结构和最佳光电化学性质的可访问范围。 通过X射线和中子散射的结构表征用于帮助回答关于机械合成转化和由此产生的动力学稳定性的关键问题。 通过光电化学性质测量,深入探讨了对它们的晶体结构和化学组成进行最佳调整以实现在阳光下有效减少二氧化碳的基本见解。 它们的热力学不稳定性和电子结构的关键关系也建立了协同计算的努力,使用密度泛函理论。 教育活动包括对参与该项目的学生进行专业培训,固态化学的新本科实验室模块,以及使用Rietveld方法进行材料表征的年度研讨会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two new multinary chalcogenides with (Se2)2− dimers: Ba8Hf2Se11(Se2) and Ba9Hf3Se14(Se2)
- DOI:10.1016/j.jssc.2023.124376
- 发表时间:2023-10
- 期刊:
- 影响因子:3.3
- 作者:Subhendu Jana;Eric A. Gabilondo;Paul A. Maggard
- 通讯作者:Subhendu Jana;Eric A. Gabilondo;Paul A. Maggard
Cation exchange route to a Eu(II)-Containing tantalum oxide
- DOI:10.1016/j.jssc.2023.124338
- 发表时间:2023-09
- 期刊:
- 影响因子:3.3
- 作者:Shaun O’Donnell;Eric A. Gabilondo;Subhendu Jana;A. Koldemir;T. Block;M. Whangbo;Reinhard K. Kremer;Rainer Pöttgen;Paul A. Maggard
- 通讯作者:Shaun O’Donnell;Eric A. Gabilondo;Subhendu Jana;A. Koldemir;T. Block;M. Whangbo;Reinhard K. Kremer;Rainer Pöttgen;Paul A. Maggard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Maggard其他文献
Paul Maggard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Maggard', 18)}}的其他基金
Pushing the Boundaries of Kinetic Stability in Metastable Perovskite Oxides
突破亚稳态钙钛矿氧化物动力学稳定性的界限
- 批准号:
2004455 - 财政年份:2020
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
CAREER: Synthesis Of Multifunctional Hybrids Of Reduced Rhenates and Related Systems
职业:还原铼酸盐多功能杂化物及相关系统的合成
- 批准号:
0644833 - 财政年份:2007
- 资助金额:
$ 37.98万 - 项目类别:
Continuing Grant
Solid-State Chemistry: New Materials And Advances In Synthetic Techniques; South Eastern Regional Meeting of the American Chem Society (SERMACS); Greenville, SC; March 24-27, 2007
固态化学:新材料和合成技术的进展;
- 批准号:
0715856 - 财政年份:2007
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
相似海外基金
Li-mediated Nitrogen Reduction for Ammonia Synthesis
锂介导的氮还原用于氨合成
- 批准号:
2904660 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Studentship
Precise Synthesis of 1,2-cis Furanosides Using Boron-Mediated Aglycon Delivery and Its Application
硼介导的糖苷配基精确合成1,2-顺式呋喃糖苷及其应用
- 批准号:
23H01966 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Targeting IKKepsilon-mediated nucleotide synthesis in KSHV-associated lymphoma
靶向 KSHV 相关淋巴瘤中 IKKepsilon 介导的核苷酸合成
- 批准号:
10762816 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
LEAPS-MPS: Exploring the Utility of Bifunctional Reagents for the Visible Light-Mediated Synthesis of Heterocycles and Biologically Relevant Molecules
LEAPS-MPS:探索双功能试剂在可见光介导的杂环和生物相关分子合成中的实用性
- 批准号:
2316834 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Standard Grant
Single-Electon-Transfer-Mediated Asymmetric Synthesis of Boron-Functionalised Amino Acids and Peptides Empowered by Synergistic Photocatalysis
协同光催化的单电子转移介导的硼功能化氨基酸和肽的不对称合成
- 批准号:
EP/X021424/1 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Fellowship
Hypervalent Iodine-Mediated Synthesis of Fluorinated Polycyclic Aromatic Hydrocarbons
高价碘介导的氟化多环芳烃的合成
- 批准号:
569075-2022 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mild and Selective Cooperative-Base Mediated Hydrosilylations for Improved Drug Synthesis
温和选择性合作介导的氢化硅烷化用于改进药物合成
- 批准号:
10436072 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Synthesis of hetero-trifunctional cross linkers for the design and evaluation of antibody-mediated delivery of chimeric protein degraders
异源三功能交联剂的合成,用于设计和评估抗体介导的嵌合蛋白降解剂的递送
- 批准号:
570610-2021 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Alliance Grants
Synthesis of 2-trans-Substituted Cyclopropylamines by Transamination via Zinc Halide Mediated Ring-Opening
卤化锌介导的开环转氨基合成 2-反式取代的环丙胺
- 批准号:
547201-2020 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Postgraduate Scholarships - Doctoral
Modular Synthesis of 1,2-Azaborines via Boron-mediated Strain-release Reductive Cyclization
通过硼介导的应变释放还原环化模块化合成 1,2-氮杂硼烷
- 批准号:
10329269 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别: