CAREER: Transforming Implantable Neural Interfaces through Computing: From Circuits to Systems

职业:通过计算改变植入式神经接口:从电路到系统

基本信息

  • 批准号:
    2317764
  • 负责人:
  • 金额:
    $ 51.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Understanding and engineering brain function has been identified as a grand scientific challenge in recognition of its potential to revolutionize a number of fields including computing and medicine. Fully-implantable Bidirectional Brain Computer Interfaces (BBCI) are the focus of this project. These are electronic systems capable of recording, processing and stimulating neural activity, and they play a foundational role in enabling better understanding of the brain. Implantable BBCIs will enable neuro-scientists to explore brain function in unprecedented detail, and help realize neuro-prosthetic devices capable of restoring mobility, vision and brain function among the disabled. However, critical technological barriers facing BBCIs are hindering progress in neuroscience. Existing BBCI architectures do not scale well, in terms of power or area, to support ever-increasing numbers of recording and stimulation channels needed for finer examination and control of brain function. Furthermore, neural stimulation produces artifacts - electrical disturbances in the brain - that hamper the ability to perform neural recording. Finally, the desired level of computational performance required to perform neural signal processing and data-communication to external devices consumes power in excess of thermal limits of implantable devices. The technologies resulting from this project will be translated into a fully implantable, bio-compatible and versatile closed-loop neuroscience platform that overcomes these existing challenges. Collaborations with neuroscientists, the medical-device industry, and fabrication partners, to be pursued during this project, are critical to the realization of this goal. The resulting platform will be made available to the broader neuroscience community to enable experiments at unprecedented levels of scale and scope, accelerating progress toward understanding the brain. Both graduate and underrepresented minority students will be involved in the project.This award addresses the critical BBCI barriers of power, area, performance and recording quality by investigating and devising cross-cutting technologies that span digital/mixed-signal circuit design, architecture, systems theory and system integration. Exploiting domain-specific structure across every level of abstraction, from algorithm partitioning down to package- and circuit-design is central to this project. The effort is organized into three threads: 1) Development of novel, computationally-enhanced neural interfaces to achieve desired levels of efficiency and scalability; 2) Exploration of domain-correspondence to Multiple-Input Multiple Output (MIMO) communication systems through low-energy computing, which will allow systems capable of rejecting artifacts and allowing recording to be focused to a targeted set of neurons; and 3) Leveraging an understanding of neural signal processing algorithms and preliminary results in ultra-low power computing to devise domain specific architectures that meet BBCI processing requirements under severe power limitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解和设计大脑功能被认为是一项重大的科学挑战,因为它有可能彻底改变包括计算和医学在内的许多领域。完全植入式双向脑机接口(BBCI)是该项目的重点。这些电子系统能够记录、处理和刺激神经活动,它们在更好地理解大脑方面发挥着基础性作用。植入式BBCI将使神经科学家能够以前所未有的细节探索大脑功能,并帮助实现能够恢复残疾人的移动性,视力和大脑功能的神经假体设备。然而,BBCIs面临的关键技术障碍阻碍了神经科学的进步。现有的BBCI架构在功率或面积方面不能很好地扩展,以支持越来越多的记录和刺激通道,这些通道是更精细地检查和控制大脑功能所需的。此外,神经刺激会产生伪影-大脑中的电干扰-这会妨碍执行神经记录的能力。最后,执行神经信号处理和与外部设备的数据通信所需的期望水平的计算性能消耗超过可植入设备的热限制的功率。该项目产生的技术将转化为完全可植入的,生物兼容的和多功能的闭环神经科学平台,以克服这些现有的挑战。与神经科学家、医疗器械行业和制造合作伙伴的合作,将在该项目期间进行,对实现这一目标至关重要。由此产生的平台将提供给更广泛的神经科学界,以实现前所未有的规模和范围的实验,加速理解大脑的进展。研究生和少数族裔学生都将参与该项目。该奖项通过研究和设计跨越数字/混合信号电路设计、架构、系统理论和系统集成的交叉技术,解决BBCI在功耗、面积、性能和记录质量方面的关键障碍。从算法划分到封装和电路设计,在每个抽象层次上利用特定于域的结构是这个项目的核心。这项工作分为三个方面:1)开发新的、计算增强的神经接口,以实现所需的效率和可扩展性水平; 2)通过低能耗计算探索与多输入多输出(MIMO)通信系统的域对应关系,这将允许系统能够拒绝伪影并允许记录集中到目标神经元集; 3)利用对神经信号处理算法的理解和超低功耗计算的初步结果,设计出在严重功耗限制下满足BBCI处理要求的特定领域架构。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Visvesh Sathe其他文献

Visvesh Sathe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Visvesh Sathe', 18)}}的其他基金

CAREER: Transforming Implantable Neural Interfaces through Computing: From Circuits to Systems
职业:通过计算改变植入式神经接口:从电路到系统
  • 批准号:
    1844791
  • 财政年份:
    2019
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Continuing Grant
SaTC: STARSS: Small: Design of Low-Power True Random Number Generator based on Adaptive Post-Processing
SaTC:STARSS:小型:基于自适应后处理的低功耗真随机数生成器设计
  • 批准号:
    1714496
  • 财政年份:
    2017
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Standard Grant

相似海外基金

Transforming museum industry to cryopreserve Australia’s diverse wildlife
改造博物馆行业以冷冻保存澳大利亚多样化的野生动物
  • 批准号:
    LP230100359
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Linkage Projects
Transforming Australian cities through net-zero transit activated corridors
通过净零交通激活走廊改造澳大利亚城市
  • 批准号:
    DE240101072
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Discovery Early Career Researcher Award
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Research Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Standard Grant
CAP: AI-Ready Institution Transforming Tomorrow's Research and Education with AI Focused on Health and Security (Jag-AI)
CAP:人工智能就绪机构通过专注于健康和安全的人工智能改变未来的研究和教育 (Jag-AI)
  • 批准号:
    2334243
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Standard Grant
Planning: Pathways to Transforming Arctic Science Programs
规划:北极科学项目转型之路
  • 批准号:
    2421373
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Standard Grant
STEMcyclists: Black and Brown Youth Transforming Science and Engineering via Bikes
STEMcyclists:黑人和棕色人种青年通过自行车改变科学和工程
  • 批准号:
    2314260
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Standard Grant
Trust in Pacific Healthcare: Transforming research, policy and practice
对太平洋医疗保健的信任:改变研究、政策和实践
  • 批准号:
    DP230102606
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Discovery Projects
Transforming child mental health: co-designing, building and evaluating a digitally enabled, personalised, prevention pathway
改变儿童心理健康:共同设计、构建和评估数字化、个性化的预防途径
  • 批准号:
    MR/X034917/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.41万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了