Federated Optimization over Bandwidth-Limited Heterogeneous Networks

带宽受限异构网络的联合优化

基本信息

  • 批准号:
    2318441
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Harnessing the power of data collected from a vast amount of geographically distributed and heterogeneous devices, in a manner without moving data around and violating privacy, has great potential in advancing science and technology and improving quality of life. Federated optimization lies at the heart of the practice realizing this vision, encompassing problems such as training large-scale machine learning or artificial intelligence models, delivering insightful data analytics, as well as facilitating decision making under uncertainty, all in distributed manners. There is a significant gap in the algorithmic foundation of federated optimization when interfacing with bandwidth-limited heterogeneous networks, such as internet-of-things, smart healthcare, and edge computing, to meet the unique challenges of taming heterogeneity, privacy, and uncertainty without sacrificing efficiency. This research project will also be tightly integrated with education and workforce developments, through offering new courses, mentoring students at all levels in research projects including underrepresented minorities and women, and disseminating the research outcomes at suitable conferences and workshops. The goal of the research program is to develop a federated optimization framework to learning and decision making by designing communication-efficient, computation-scalable, and privacy-preserving algorithms that converge provably over highly heterogeneous data and computing environments. Leveraging insights from machine learning, optimization theory, signal processing, and differential privacy, the research program offers an entirely new suite of theoretical and algorithmic tools to enable heterogeneity-embracing and privacy-preserving learning and decision making in federated environments under bandwidth constraints, unveiling fundamental trade-offs among computation, communication, privacy, and utility. The research program will gravitate around a semi-decentralized federated setting suitable to meet the diverse needs of bandwidth-limited heterogeneous networks, and focus on developing bandwidth-limited federated optimization algorithms that are efficient, resilient, and private with rigorous performance guarantees for a wide range of problems arising from machine learning, data analysis, and sequential decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用从大量地理分布和异构设备收集的数据的力量,在不移动数据和侵犯隐私的情况下,在推进科学技术和提高生活质量方面具有巨大潜力。联邦优化是实现这一愿景的实践的核心,包括训练大规模机器学习或人工智能模型、提供有洞察力的数据分析以及促进不确定性下的决策制定等问题,所有这些都以分布式方式进行。在与带宽有限的异构网络(如物联网、智能医疗保健和边缘计算)接口时,联邦优化的算法基础存在显著差距,无法在不牺牲效率的情况下应对控制异质性、隐私性和不确定性的独特挑战。该研究项目还将与教育和劳动力发展紧密结合,提供新课程,指导各级学生参与研究项目,包括代表性不足的少数民族和妇女,并在适当的会议和讲习班上传播研究成果。该研究计划的目标是通过设计通信高效、计算可扩展和隐私保护的算法,开发一个用于学习和决策的联邦优化框架,这些算法可证明在高度异构的数据和计算环境中收敛。利用来自机器学习、优化理论、信号处理和差分隐私的见解,该研究项目提供了一套全新的理论和算法工具,以实现带宽限制下联邦环境中包容异构和保护隐私的学习和决策,揭示计算、通信、隐私和效用之间的基本权衡。该研究计划将围绕半分散的联邦设置,适合满足带宽有限的异构网络的各种需求,并专注于开发带宽有限的联邦优化算法,该算法高效、有弹性、具有严格的性能保证,适用于机器学习、数据分析和顺序决策产生的各种问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression
  • DOI:
    10.48550/arxiv.2310.19059
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sijin Chen;Zhize Li;Yuejie Chi
  • 通讯作者:
    Sijin Chen;Zhize Li;Yuejie Chi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuejie Chi其他文献

Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
解决基于模型的离线强化学习的样本复杂度
  • DOI:
    10.48550/arxiv.2204.05275
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gen Li;Laixi Shi;Yuxin Chen;Yuejie Chi;Yuting Wei
  • 通讯作者:
    Yuting Wei
Memory-Limited stochastic approximation for poisson subspace tracking
泊松子空间跟踪的内存有限随机近似
Regularized blind detection for MIMO communications
MIMO 通信的正则盲检测
Principal subspace estimation for low-rank Toeplitz covariance matrices with binary sensing
具有二元感知的低秩 Toeplitz 协方差矩阵的主子空间估计
Golay complementary waveforms for sparse delay-Doppler radar imaging
用于稀疏延迟多普勒雷达成像的 Golay 互补波形

Yuejie Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuejie Chi', 18)}}的其他基金

Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
  • 批准号:
    2134080
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
  • 批准号:
    2219655
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106778
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
  • 批准号:
    2126634
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
  • 批准号:
    2007911
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    1901199
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Small: Inverse Methods for Parametric Mixture Models
CIF:小:参数混合模型的逆方法
  • 批准号:
    1826519
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
  • 批准号:
    1818571
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1806154
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ADAPTIVE MOTIF-BASED CONTROL (AMBC): A FUNDAMENTALLY NEW APPROACH TO AUTOMATED TREATMENT OPTIMIZATION FOR TYPE 1 DIABETES
自适应基序控制 (AMBC):1 型糖尿病自动优化治疗的全新方法
  • 批准号:
    10684819
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Design, Analysis, and Optimization of an End-to-End Cloud-Centric System for Internet of Things over HetNet
HetNet 上的物联网端到端以云为中心的系统的设计、分析和优化
  • 批准号:
    RGPIN-2017-04423
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Small: Hierarchical Federated Learning Over Wireless Edge Networks: Performance Analysis and Optimization
协作研究:CNS 核心:小型:无线边缘网络的分层联邦学习:性能分析和优化
  • 批准号:
    2114267
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Hierarchical Federated Learning Over Wireless Edge Networks: Performance Analysis and Optimization
协作研究:CNS 核心:小型:无线边缘网络的分层联邦学习:性能分析和优化
  • 批准号:
    2114283
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Small: Timing Optimization Over Random Network Asynchrony - Theory And Distributed Algorithms
CIF:小:随机网络异步的时序优化 - 理论和分布式算法
  • 批准号:
    2008527
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Extended Reality over Wireless Cellular Networks: Quality-of-Experience Analysis and Optimization
合作研究:CNS 核心:小型:无线蜂窝网络上的扩展现实:体验质量分析和优化
  • 批准号:
    2008646
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Design, Analysis, and Optimization of an End-to-End Cloud-Centric System for Internet of Things over HetNet
HetNet 上的物联网端到端以云为中心的系统的设计、分析和优化
  • 批准号:
    RGPIN-2017-04423
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distributed Synchronous and Asynchronous Stochastic Optimization Algorithms over Networks
网络分布式同步和异步随机优化算法
  • 批准号:
    2012439
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Extended Reality over Wireless Cellular Networks: Quality-of-Experience Analysis and Optimization
合作研究:CNS 核心:小型:无线蜂窝网络上的扩展现实:体验质量分析和优化
  • 批准号:
    2007635
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了