Collaborative Research: CNS Core: Small: Hierarchical Federated Learning Over Wireless Edge Networks: Performance Analysis and Optimization

协作研究:CNS 核心:小型:无线边缘网络的分层联邦学习:性能分析和优化

基本信息

项目摘要

Federated learning (FL) is revolutionizing machine learning by catalyzing a paradigm shift from cloud-based centralized learning towards distributed, on-device edge learning. FL enables devices to collaboratively train and execute a global learning task by using local processing and simple learning parameters exchange, thus avoiding the communication and privacy concerns associated with sharing large data volumes with a remote cloud. Owing to its attractive privacy, scalability, and communication features, FL will be an integral edge component of Internet of Things (IoT) services such as autonomous systems. However, when deployed over the wireless IoT edge, the performance of FL will be largely constrained by the quality of the wireless links used to exchange the local and global FL model parameters. Since the next-generation IoT will be powered by a wireless cellular system (e.g., 5G), reaping the benefits of FL for the IoT hinges on understanding how wireless factors, such as fading, interference, and delay, impact the convergence and performance of FL (e.g., accuracy, reliability, and convergence time). The goal of this research is to develop a foundational framework that rigorously answers fundamental questions on the achievable FL performance over realistic, large-scale wireless edge networks thus facilitating FL integration unto a real-world IoT. The research is coupled with a well-crafted educational plan that includes a new course at the intersection of communications and machine learning as well as a significant involvement of graduate and undergraduate students at all levels. Broad dissemination and outreach will be ensured via several workshops, tutorials, outreach events, and other tools.This research will develop a novel, holistic framework for performance analysis and optimization of FL over large-scale wireless cellular edge networks. The proposed framework will yield major innovations across both wireless and FL fields: 1) A scalable hierarchical wireless architecture that allows a large-scale implementation of FL over wireless cellular systems, 2) Rigorous performance analysis of hierarchical FL over wireless edge networks that will yield novel FL performance metrics that jointly couple learning performance indicators, such as training accuracy and convergence time, 3) Novel notions of reliability for FL over wireless networks to enable the operation of FL under extreme network conditions and in presence of IoT device mobility and spatio-temporal correlations, and 4) Suitable resource allocation algorithms that can optimize the performance of hierarchical FL over wireless edge networks. The results will be validated using various simulation and experimental means.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习(FL)正在通过催化从基于云的集中学习向分布式的,设备的边缘学习的范式转变来彻底改变机器学习。 FL使设备可以通过使用本地处理和简单的学习参数交换来协作训练和执行全局学习任务,从而避免与与远程云共享大数据量相关的通信和隐私问题。由于其吸引人的隐私,可扩展性和通信功能,FL将成为物联网(IoT)服务(例如自主系统)的整体边缘组成部分。但是,当在无线物联网边缘部署时,FL的性能将在很大程度上受到用于交换本地和全局FL模型参数的无线链接的质量。由于下一代物联网将由无线蜂窝系统(例如5G)提供动力,因此从IoT链接中获得了FL的益处,以了解了解无线因素(例如褪色,干扰和延迟)如何影响FL的融合和性能(例如,准确性,可靠性,可靠性和收敛时间)。这项研究的目的是开发一个基本框架,该框架严格回答有关现实,大规模无线边缘网络可实现的FL性能的基本问题,从而促进FL集成到现实世界的物联网。这项研究与精心制作的教育计划相结合,其中包括在通信和机器学习交集的新课程,以及各级研究生和本科生的重要参与。将通过多个研讨会,教程,外展事件和其他工具来确保广泛的传播和外展。这项研究将开发出一个新颖的,整体的绩效框架,用于性能分析和在大型无线蜂窝边缘网络上进行FL的优化。 The proposed framework will yield major innovations across both wireless and FL fields: 1) A scalable hierarchical wireless architecture that allows a large-scale implementation of FL over wireless cellular systems, 2) Rigorous performance analysis of hierarchical FL over wireless edge networks that will yield novel FL performance metrics that jointly couple learning performance indicators, such as training accuracy and convergence time, 3) Novel notions of reliability for FL over wireless networks to enable the operation在极端网络条件下的FL以及物联网设备移动性和时空相关性的存在,以及4)适当的资源分配算法,这些算法可以优化无线边缘网络层次级别的性能。该奖项将通过各种模拟和实验手段进行验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Tradeoff between Energy, Precision, and Accuracy in Federated Quantized Neural Networks
Performance Optimization for Variable Bitwidth Federated Learning in Wireless Networks
  • DOI:
    10.1109/twc.2023.3297790
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Sihua Wang;Mingzhe Chen;Christopher G. Brinton;Changchuan Yin;W. Saad;Shuguang Cui
  • 通讯作者:
    Sihua Wang;Mingzhe Chen;Christopher G. Brinton;Changchuan Yin;W. Saad;Shuguang Cui
Vector Quantized Compressed Sensing for Communication-Efficient Federated Learning
  • DOI:
    10.1109/gcwkshps56602.2022.10008615
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong-Nam Oh;Yo-Seb Jeon;Mingzhe Chen;W. Saad
  • 通讯作者:
    Yong-Nam Oh;Yo-Seb Jeon;Mingzhe Chen;W. Saad
Green, Quantized Federated Learning Over Wireless Networks: An Energy-Efficient Design
  • DOI:
    10.1109/twc.2023.3289177
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Minsu Kim;W. Saad;Mohammad Mozaffari;M. Debbah
  • 通讯作者:
    Minsu Kim;W. Saad;Mohammad Mozaffari;M. Debbah
Model-Based Reinforcement Learning for Quantized Federated Learning Performance Optimization
  • DOI:
    10.1109/globecom48099.2022.10001466
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nuocheng Yang;Sihua Wang;Mingzhe Chen;Christopher G. Brinton;Changchuan Yin;W. Saad;Shuguang Cui
  • 通讯作者:
    Nuocheng Yang;Sihua Wang;Mingzhe Chen;Christopher G. Brinton;Changchuan Yin;W. Saad;Shuguang Cui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walid Saad其他文献

Joint User Grouping, Version Selection and Bandwidth Allocation for Live Video Multicasting
直播视频组播的联合用户分组、版本选择和带宽分配
  • DOI:
    10.1109/tcomm.2021.3115480
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Zhilong Zhang;Minyin Zeng;Danpu Liu;Walid Saad;Shuguang Cui;H. Vincent Poor
  • 通讯作者:
    H. Vincent Poor
Sensing Aided Channel Estimation in Wideband Millimeter-Wave MIMO Systems
宽带毫米波 MIMO 系统中的传感辅助信道估计
Computer Vision-Based Localization With Visible Light Communications
基于计算机视觉的可见光通信定位
  • DOI:
    10.1109/twc.2021.3109146
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Lin Bai;Yang Yang;Mingzhe Chen;Chunyan Feng;Caili Guo;Walid Saad;Shuguang Cui
  • 通讯作者:
    Shuguang Cui
Investigation of genes that may contribute to disease tropism in Leishmania species
研究可能有助于利什曼原虫物种向病性的基因
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walid Saad
  • 通讯作者:
    Walid Saad
Drug product immobilization in recycled polyethylene/polypropylene reclaimed from municipal solid waste: experimental and numerical assessment
从城市固体废物中回收的聚乙烯/聚丙烯中固定药品:实验和数值评估
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Walid Saad;Wael Slika;Zara Mawla;G. Saad
  • 通讯作者:
    G. Saad

Walid Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walid Saad', 18)}}的其他基金

Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
  • 批准号:
    2210254
  • 财政年份:
    2022
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
NSF-AoF: Vision-Guided Wireless Communication Systems
NSF-AoF:视觉引导无线通信系统
  • 批准号:
    2225511
  • 财政年份:
    2022
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
SII Planning: ARIES: Center for Agile, RelIablE, Scalable Spectrum
SII 规划:ARIES:敏捷、可靠、可扩展频谱中心
  • 批准号:
    2037870
  • 财政年份:
    2020
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
  • 批准号:
    2025377
  • 财政年份:
    2020
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Extended Reality over Wireless Cellular Networks: Quality-of-Experience Analysis and Optimization
合作研究:CNS 核心:小型:无线蜂窝网络上的扩展现实:体验质量分析和优化
  • 批准号:
    2007635
  • 财政年份:
    2020
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
CNS Core: Small: Collaborative: Towards Surge-Resilient Hybrid RF/VLC Networks
CNS 核心:小型:协作:迈向抗浪涌混合 RF/VLC 网络
  • 批准号:
    1909372
  • 财政年份:
    2019
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
ICE-T: RC: Towards Highly Reliable Low Latency Broadband (HRLLBB) Communications over Wireless Heterogeneous Networks
ICE-T:RC:通过无线异构网络实现高度可靠的低延迟宽带 (HRLLBB) 通信
  • 批准号:
    1836802
  • 财政年份:
    2018
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: A Human-Centered Computational Framework for Urban and Community Design of Resilient Coastal Cities
CRISP 类型 1/协作研究:以人为本的弹性沿海城市城市和社区设计计算框架
  • 批准号:
    1638283
  • 财政年份:
    2017
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities
BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析
  • 批准号:
    1633363
  • 财政年份:
    2016
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
CRISP Type 2: Collaborative Research: Towards Resilient Smart Cities
CRISP 类型 2:协作研究:迈向弹性智能城市
  • 批准号:
    1541105
  • 财政年份:
    2016
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
    82201491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
  • 批准号:
    82101506
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
  • 批准号:
    32160834
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 16.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了