Approaches toward External Validity of Randomized Controlled Trials in the Social Sciences

社会科学中随机对照试验的外部有效性方法

基本信息

  • 批准号:
    2318659
  • 负责人:
  • 金额:
    $ 23.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Social scientists and decision makers have been interested in whether and how well they can generalize the results of randomized controlled trials (RCTs) to new populations, places, and contexts. This question of external validity is a foundation of evidence-based decision making because study populations and sites are often different from the real-world populations and sites to which an intervention might be scaled up. This research develops statistical approaches to improve the external validity of RCTs in the social sciences. The research makes two methodological contributions. The first is a new framework to design RCTs for external validity. Specifically, this project develops an algorithm to select experimental sites such that researchers can credibly estimate generalizable causal effects. Site selection is essential because experimental results in the social sciences are often heterogeneous across places, and biased selection of experimental sites can lead to low generalizability and replicability. The second contribution is a statistical tool to quantify the robustness to external validity bias. This new measure of external robustness allows researchers to evaluate external validity even when RCTs were conducted without external validity considerations. These two methods complement each other and together provide a unified pipeline to improve the external validity of RCTs in the social sciences.The project is co-funded by the Science of Science: Discovery, Communications, and Impact program; the Accountability, Institutions and Behavior program; and the Office of Integrative Activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会科学家和决策者一直感兴趣的是,他们是否以及如何将随机对照试验(RCT)的结果推广到新的人群、地点和环境。这个外部有效性问题是循证决策的基础,因为研究人群和研究中心通常与干预措施可能扩大的现实人群和研究中心不同。本研究发展了统计方法,以提高社会科学中RCT的外部效度。该研究作出了两个方法上的贡献。第一个是设计外部效度RCT的新框架。具体而言,该项目开发了一种算法来选择实验地点,以便研究人员可以合理地估计可推广的因果效应。选址是必不可少的,因为社会科学的实验结果往往是异质性的地方,和有偏见的选择实验地点可能会导致低的普遍性和可复制性。第二个贡献是一个统计工具来量化外部效度偏差的鲁棒性。这种新的外部稳健性测量方法允许研究人员评估外部效度,即使在没有外部效度考虑的情况下进行RCT。这两种方法相互补充,共同提供了一个统一的管道,以提高社会科学中RCT的外部效度。该项目由科学的科学:发现,交流和影响计划,问责制,机构和行为计划,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Egami其他文献

Using Large Language Model Annotations for Valid Downstream Statistical Inference in Social Science: Design-Based Semi-Supervised Learning
使用大型语言模型注释进行社会科学中有效的下游统计推断:基于设计的半监督学习
  • DOI:
    10.48550/arxiv.2306.04746
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Egami;Musashi Jacobs;Brandon M. Stewart;Hanying Wei
  • 通讯作者:
    Hanying Wei
Using Multiple Pretreatment Periods to Improve Difference-in-Differences and Staggered Adoption Designs
使用多个预处理周期来改进双重差分和交错采用设计
  • DOI:
    10.1017/pan.2022.8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Naoki Egami;S. Yamauchi
  • 通讯作者:
    S. Yamauchi
Vitamin K prophylaxis in neonates: comparing two different oral regimens.
新生儿维生素 K 预防:比较两种不同的口服方案。
Pediatric pulmonary veno‐occlusive disease associated with a novel BMPR2 variant
与新型 BMPR2 变异相关的小儿肺静脉闭塞性疾病
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Wataru Takemori;Kenichiro Yamamura;Y. Tomita;Naoki Egami;Katsuhide Eguchi;H. Nagata;Hiromitsu Shirouzu;Y. Ishikawa;D. Nakajima;A. Yoshizawa;H. Date;S. Ohga
  • 通讯作者:
    S. Ohga
Spillover Effects in the Presence of Unobserved Networks
存在未观察到的网络时的溢出效应
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Naoki Egami
  • 通讯作者:
    Naoki Egami

Naoki Egami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mentored Excellence Toward Research and Industry Careers 2
指导卓越研究和行业职业 2
  • 批准号:
    2322416
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Standard Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了