Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
基本信息
- 批准号:2318977
- 负责人:
- 金额:$ 44.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The reliable and safe operation of autonomous systems relies on accurately quantifying uncertainty and assimilating noisy sensory data through nonlinear filtering. This research proposal seeks to combine recent advancements in machine learning (ML) and the mathematical theory of optimal transportation (OT) to create scalable and adaptable nonlinear filtering algorithms. The research objectives encompass computational development and evaluation of the proposed algorithms, theoretical error analysis, extending the algorithms to handle geometric constraints for pose estimation, and the development of a new learning framework to adapt incorrect models using output sensory data. By merging ML and OT, this research aims to enhance the performance and versatility of nonlinear filtering methods for autonomous systems.Intellectual Merit: The intellectual merit of this research lies in the innovative variational formulation of conditional distributions, acting as a bridge between nonlinear filtering and machine learning. This connection facilitates the exchange of theoretical and computational tools. The research aims to explore ways to overcome the curse of dimensionality in particle filters, offering insights into existing nonlinear filtering algorithms like feedback particle filter and ensemble Kalman filter. This, in turn, paves the way for new avenues in stability and error analysis. Furthermore, the proposed model adaptation and learning framework holds great potential to advance the study of learning stochastic dynamic systems from sensory data and provides new opportunities in solving problems related to partially observed Markov decision processes (POMDPs). Broader Impacts: This research proposal has broader societal impacts as it lays the foundation for uncertainty-aware autonomous systems, leading to significant improvements in their safety and efficiency in the presence of uncertainty. This impacts domains such as robotics, by increasing their capability to navigate unknown environments, adapting to dynamic conditions, and making informed and safe decisions. The research would also impact the smart-grid by effectively managing the uncertainty, due to integration of renewable energy sources, leading to more efficient utilization of available energy sources. Additionally, the proposal includes educational objectives, leveraging the existing infrastructure at the University of Washington to provide research opportunities for undergraduates and mentorship for underrepresented minorities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自主系统的可靠和安全运行依赖于通过非线性滤波准确量化不确定性和吸收嘈杂的传感数据。该研究提案旨在将机器学习(ML)和最优运输(OT)的数学理论的最新进展联合收割机结合起来,以创建可扩展和自适应的非线性过滤算法。研究目标包括计算开发和评估所提出的算法,理论误差分析,扩展的算法来处理几何约束的姿态估计,以及开发一个新的学习框架,以适应不正确的模型使用输出传感器数据。通过合并ML和OT,本研究旨在提高自治system.Intellectual优点的非线性滤波方法的性能和通用性:本研究的智力价值在于条件分布的创新变分公式,作为非线性滤波和机器学习之间的桥梁。这种联系促进了理论和计算工具的交流。该研究旨在探索克服粒子滤波中维数灾难的方法,为反馈粒子滤波和集合卡尔曼滤波等现有非线性滤波算法提供见解。这反过来又为稳定性和错误分析的新途径铺平了道路。此外,所提出的模型自适应和学习框架具有很大的潜力,以推进学习随机动态系统从传感器数据的研究,并提供了新的机会,在解决问题的部分观测马尔可夫决策过程(POMDPs)。更广泛的影响:这项研究提案具有更广泛的社会影响,因为它为不确定性感知的自主系统奠定了基础,从而在存在不确定性的情况下显着提高了其安全性和效率。这影响了机器人等领域,提高了它们在未知环境中导航的能力,适应动态条件,并做出明智和安全的决策。该研究还将通过有效管理可再生能源的整合带来的不确定性来影响智能电网,从而更有效地利用可用能源。此外,该提案还包括教育目标,利用华盛顿大学现有的基础设施,为本科生提供研究机会,并为代表性不足的少数民族提供指导。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amirhossein Taghvaei其他文献
Time-Reversal of Stochastic Maximum Principle
- DOI:
10.48550/arxiv.2403.02044 - 发表时间:
2024-03 - 期刊:
- 影响因子:0
- 作者:
Amirhossein Taghvaei - 通讯作者:
Amirhossein Taghvaei
Data-Driven Approximation of Stationary Nonlinear Filters with Optimal Transport Maps
具有最佳传输图的稳态非线性滤波器的数据驱动逼近
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohammad Al;Bamdad Hosseini;Amirhossein Taghvaei - 通讯作者:
Amirhossein Taghvaei
Distributed Nonlinear Filtering using Triangular Transport Maps
使用三角传输图的分布式非线性滤波
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Grange;Ricardo Baptista;Amirhossein Taghvaei;Allen R. Tannenbaum;Sean Phillips - 通讯作者:
Sean Phillips
Amirhossein Taghvaei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Online Inverse Optimal Transport for Societal Flows
社会流量的在线逆最优运输
- 批准号:
EP/X010503/1 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Research Grant
Statistical Inference for Optimal Transport
最佳运输的统计推断
- 批准号:
2310632 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
- 批准号:
2313454 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
- 批准号:
2345556 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant