CyberTraining: Implementation: Medium: C2D - Cybertraining for Chemical Data scientists
网络培训:实施:媒介:C2D - 化学数据科学家的网络培训
基本信息
- 批准号:2321054
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project establishes a scalable and sustainable training platform for workforce development in data chemistry, named C2D (Cybertraining for Chemical Data scientists). The use of machine learning (ML) will revolutionize synthetic chemistry and many fields that depend on it, including materials and energy science, information technology and health sciences. To enable this transformation, the existing and future workforce needs training that takes their diversity of training requirements, backgrounds, and learning preferences into account. The C2D is an adaptive and personalized training platform, entailing personalized task selection from curated learning materials based on learners' progress and automated assessment of their learning status. It organizes training videos, reading, and assessments in a way that is responsive to the needs of the learners and will be offered to the academic, industrial, and general population free of charge. Specific recruitment mechanisms will ensure the participation of underrepresented groups. Using a combination of online and in-person training, C2D will empower the current and future workforce to use ML in synthetic chemistry. The Cybertraining for Chemical Data scientists (C2D) platform integrates adaptive learning and assessment with personalized recommendations for training materials regarding the application of machine learning in synthetic chemistry, thereby enabling personalized instruction in the field of data chemistry. The platform is the result of an interdisciplinary collaboration of psychologists, computer scientists and chemists, and aims to develop C2D around the latest psychometric principles and recommender systems for providing personalized instruction. Starting from a survey and focus groups analysis involving domain experts, the C2D will develop a blueprint for curating curricular material that is fed into a personalized recommender system based on continuous adaptive assessment. The C2D works with a number of academic and industrial partners to ensure the wide adoption and sustainability of the platforms. It will promote the development of research workforce integrating core ML literacy and chemistry-specific cyber skills to enable the wide adoption of ML methods in chemistry and ensure the continued economic competitiveness of the sectors that depend on synthetic chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为数据化学领域的劳动力发展建立了一个可扩展和可持续的培训平台,名为C2d(化学数据科学家网络培训)。机器学习(ML)的使用将给合成化学和许多依赖于它的领域带来革命性的变化,包括材料和能源科学、信息技术和健康科学。为了实现这一转变,现有和未来的劳动力需要进行培训,考虑到他们的培训要求、背景和学习偏好的多样性。C2D是一个适应性和个性化的培训平台,需要根据学习者的进度从精选的学习材料中选择个性化的任务,并自动评估他们的学习状态。它组织培训视频、阅读和评估,以响应学习者的需求,并将免费提供给学术界、工业界和普通民众。具体的招聘机制将确保任职人数不足的群体参加。使用在线和面对面培训相结合的方式,C2d将使当前和未来的劳动力能够在合成化学中使用ML。化学数据科学家网络培训(C2d)平台将适应性学习和评估与关于机器学习在合成化学中的应用有关的培训材料的个性化建议结合在一起,从而实现了数据化学领域的个性化教学。该平台是心理学家、计算机科学家和化学家跨学科合作的结果,旨在围绕最新的心理测量学原理和推荐系统开发C2D,以提供个性化教学。从涉及领域专家的调查和焦点小组分析开始,C2D将制定课程材料的蓝图,并将其输入基于持续自适应评估的个性化推荐系统。C2d与许多学术和工业合作伙伴合作,确保这些平台的广泛采用和可持续性。它将促进整合核心ML素养和特定于化学的网络技能的研究队伍的发展,以使ML方法在化学中得到广泛采用,并确保依赖合成化学的部门持续的经济竞争力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangliang Zhang其他文献
Manipulating Predictions over Discrete Inputs in Machine Teaching
在机器教学中操纵对离散输入的预测
- DOI:
10.48550/arxiv.2401.17865 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xiaodong Wu;Yufei Han;H. Dahrouj;Jianbing Ni;Zhenwen Liang;Xiangliang Zhang - 通讯作者:
Xiangliang Zhang
1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?
1 1>2:大型语言模型能否充当跨语言知识聚合器?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yue Huang;Chenrui Fan;Yuan Li;Siyuan Wu;Tianyi Zhou;Xiangliang Zhang;Lichao Sun - 通讯作者:
Lichao Sun
Data-Driven State Estimation for Light-Emitting Diode Underwater Optical Communication
水下光通信发光二极管的数据驱动状态估计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yingquan Li;Zhenwen Liang;I. N’Doye;Xiangliang Zhang;Mohamed;T. Laleg‐Kirati - 通讯作者:
T. Laleg‐Kirati
Improving reaction prediction through chemically aware transfer learning
通过化学感知迁移学习改进反应预测
- DOI:
10.1039/d4dd00412d - 发表时间:
2025-03-17 - 期刊:
- 影响因子:5.600
- 作者:
Angus Keto;Taicheng Guo;Nils Gönnheimer;Xiangliang Zhang;Elizabeth H. Krenske;Olaf Wiest - 通讯作者:
Olaf Wiest
Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films
用于增强超薄硅膜中宽带吸收的机器学习辅助等离子体超屏幕
- DOI:
10.1038/s41377-024-01723-8 - 发表时间:
2025-01-09 - 期刊:
- 影响因子:23.400
- 作者:
Waqas W. Ahmed;Haicheng Cao;Changqing Xu;Mohamed Farhat;Muhammad Amin;Xiaohang Li;Xiangliang Zhang;Ying Wu - 通讯作者:
Ying Wu
Xiangliang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangliang Zhang', 18)}}的其他基金
Proto-OKN Theme 1: Exploiting Federal Data and Beyond: A Multi-modal Knowledge Network for Comprehensive Wildlife Management under Climate Change
Proto-OKN 主题 1:利用联邦数据及其他数据:气候变化下综合野生动物管理的多模式知识网络
- 批准号:
2333795 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321044 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Medium: Computational Materials Science Summer School - Fostering Accelerated Scientific Techniques (CMS3-FAST)
网络培训:实施:媒介:计算材料科学暑期学校 - 促进加速科学技术 (CMS3-FAST)
- 批准号:
2321005 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
- 批准号:
2229604 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cyber2A: CyberTraining on AI-driven Analytics for Next Generation Arctic Scientists
合作研究:网络培训:实施:媒介:Cyber2A:下一代北极科学家人工智能驱动分析的网络培训
- 批准号:
2230034 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: T3-CIDERS: A Train-the-Trainer Approach to Fostering CI- and Data-Enabled Research in Cybersecurity
协作研究:网络培训:实施:中:T3-CIDERS:一种培训师培训方法,促进网络安全中的 CI 和数据支持研究
- 批准号:
2320998 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant