Proto-OKN Theme 1: Exploiting Federal Data and Beyond: A Multi-modal Knowledge Network for Comprehensive Wildlife Management under Climate Change

Proto-OKN 主题 1:利用联邦数据及其他数据:气候变化下综合野生动物管理的多模式知识网络

基本信息

  • 批准号:
    2333795
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This Prototype-Open Knowledge Network project seeks to create a comprehensive, integrative knowledge network for the management of wildlife in the context of climate change, called KN-Wildlife. Effective wildlife management is essential for safeguarding biodiversity, ecosystem health, and economic stability of any region. The looming threat of climate change can disrupt the distribution, behavior, and population dynamics of many species, particularly those that are invasive or threatened or economically important. While Species Distribution Models (SDMs) have been used to predict species responses to climate change, their predictive capability can be hampered by the omission of several influencing factors like interspecies competition, changes in land use, or the migration ability of various species. A number of data sources are available that are relevant to these considerations including the United States Geological Survey (USGS), the Global Biodiversity Information Facility, and the IUCN Red List of Threatened Species. However, the effective use of these data is currently impeded by factors associated with the heterogeneity, spatial and temporal discrepancies, and varying quality and completeness of the data. KN-Wildlife will address this problem by providing an open-access platform that couples data with visualization tools and predictive models to distill complex multimodal data into an intuitive, unified representation of managed species. KN-Wildlife would help inform decision-making processes and while providing stakeholders with actionable insights. The project will begin by providing comprehensive knowledge and predictive models for species of concern to stakeholders in these two US states, viz., Indiana and Florida. Project collaborators include stakeholders from the Fish and Wildlife Commissions (FWC) and Departments of Health (DoH) from both of these states. KN-Wildlife will initially focus on around 3,000 managed species of interest to the stakeholders, encompassing a broad taxonomy from fungi and bacteria to fish and mammals. Working in collaboration with the Lucy Family Institute at the University of Notre Dame, the project will integrate use of KN-Wildlife into the NSF-funded Interdisciplinary Traineeship for Socially Responsible and Engaged Data Scientists (iTREDS) program and the Summer Education and Engagement for Data Science (SEEDS) Program. These initiatives are specifically designed to provide undergraduate data science training centered on societal challenges, and also provide K-12 training opportunities for those from under-resourced schools and communities. All KN-Wildlife resources will be publicly available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个原型开放知识网络项目旨在创建一个全面的,综合的知识网络,用于在气候变化的背景下管理野生动物,称为KN野生动物。有效的野生动物管理对于保护任何地区的生物多样性、生态系统健康和经济稳定至关重要。气候变化的威胁可能会破坏许多物种的分布,行为和种群动态,特别是那些入侵或受威胁或经济重要的物种。虽然物种分布模型(SDM)已被用于预测物种对气候变化的反应,但其预测能力可能会受到忽略的几个影响因素,如物种间的竞争,土地利用的变化,或各种物种的迁移能力。与这些考虑因素有关的数据来源包括美国地质调查局(USGS)、全球生物多样性信息设施和世界自然保护联盟濒危物种红色名录。然而,由于数据的异质性、空间和时间差异以及质量和完整性参差不齐,目前这些数据的有效利用受到阻碍。KN-Wildlife将通过提供一个开放访问平台来解决这个问题,该平台将数据与可视化工具和预测模型相结合,将复杂的多模态数据提取为管理物种的直观,统一的表示。KN-Wildlife将有助于为决策过程提供信息,同时为利益相关者提供可操作的见解。该项目将开始,为美国这两个州的利益相关者提供有关物种的全面知识和预测模型,即,印第安纳州和佛罗里达。项目合作者包括来自这两个州的鱼类和野生动物委员会(FWC)和卫生部(DoH)的利益相关者。KN-野生动物最初将专注于利益相关者感兴趣的约3,000种管理物种,包括从真菌和细菌到鱼类和哺乳动物的广泛分类。该项目与圣母大学露西家庭研究所合作,将KN-Wildlife的使用整合到NSF资助的社会责任和参与数据科学家跨学科培训(iTREDS)计划以及暑期教育和参与数据科学(SEEDS)计划中。这些举措专门旨在提供以社会挑战为中心的本科数据科学培训,并为来自资源不足的学校和社区的学生提供K-12培训机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangliang Zhang其他文献

Manipulating Predictions over Discrete Inputs in Machine Teaching
在机器教学中操纵对离散输入的预测
  • DOI:
    10.48550/arxiv.2401.17865
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaodong Wu;Yufei Han;H. Dahrouj;Jianbing Ni;Zhenwen Liang;Xiangliang Zhang
  • 通讯作者:
    Xiangliang Zhang
1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?
1 1>2:大型语言模型能否充当跨语言知识聚合器?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Huang;Chenrui Fan;Yuan Li;Siyuan Wu;Tianyi Zhou;Xiangliang Zhang;Lichao Sun
  • 通讯作者:
    Lichao Sun
Data-Driven State Estimation for Light-Emitting Diode Underwater Optical Communication
水下光通信发光二极管的数据驱动状态估计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingquan Li;Zhenwen Liang;I. N’Doye;Xiangliang Zhang;Mohamed;T. Laleg‐Kirati
  • 通讯作者:
    T. Laleg‐Kirati
Improving reaction prediction through chemically aware transfer learning
通过化学感知迁移学习改进反应预测
  • DOI:
    10.1039/d4dd00412d
  • 发表时间:
    2025-03-17
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Angus Keto;Taicheng Guo;Nils Gönnheimer;Xiangliang Zhang;Elizabeth H. Krenske;Olaf Wiest
  • 通讯作者:
    Olaf Wiest
Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films
用于增强超薄硅膜中宽带吸收的机器学习辅助等离子体超屏幕
  • DOI:
    10.1038/s41377-024-01723-8
  • 发表时间:
    2025-01-09
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Waqas W. Ahmed;Haicheng Cao;Changqing Xu;Mohamed Farhat;Muhammad Amin;Xiaohang Li;Xiangliang Zhang;Ying Wu
  • 通讯作者:
    Ying Wu

Xiangliang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangliang Zhang', 18)}}的其他基金

CyberTraining: Implementation: Medium: C2D - Cybertraining for Chemical Data scientists
网络培训:实施:媒介:C2D - 化学数据科学家的网络培训
  • 批准号:
    2321054
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

等亮度彩色运动图象的OKN眼动跟踪的研究
  • 批准号:
    39200038
  • 批准年份:
    1992
  • 资助金额:
    4.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proto-OKN Theme 3: An Education Gateway for the Proto-OKN
Proto-OKN 主题 3:Proto-OKN 的教育网关
  • 批准号:
    2333532
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: The Water-Energy Nexus Open Knowledge Network (WEN-OKN)
Proto-OKN 主题 1:水-能源关系开放知识网络 (WEN-OKN)
  • 批准号:
    2333726
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: An integrated platform to connect criminal justice data across data silos
Proto-OKN 主题 1:跨数据孤岛连接刑事司法数据的集成平台
  • 批准号:
    2333803
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1 - Supply and Demand Open Knowledge Network (SUDOKN)
Proto-OKN 主题 1 - 供需开放知识网络 (SUDOKN)
  • 批准号:
    2333801
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 2: SPIDER: Scalable Public Infrastructure for Distributed Entity Relationships
Proto-OKN 主题 2:SPIDER:分布式实体关系的可扩展公共基础设施
  • 批准号:
    2333849
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: BioBricks-OKG An Open Knowledge Graph For Cheminformatics And Chemical Safety
Proto-OKN 主题 1:BioBricks-OKG 化学信息学和化学品安全的开放知识图
  • 批准号:
    2333728
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: A Knowledge Graph Warehouse for Neighborhood Information
Proto-OKN 主题 1:社区信息知识图仓库
  • 批准号:
    2333790
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: Connecting Biomedical information on Earth and in Space via the SPOKE knowledge graph
Proto-OKN 主题 1:通过 SPOKE 知识图连接地球和太空的生物医学信息
  • 批准号:
    2333819
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 2 Fabric: FabRic Integrating Networked Knowledge (FRINK)
Proto-OKN 主题 2 Fabric:集成网络知识的 FabRic (FRINK)
  • 批准号:
    2333810
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了