Leveraging Machine Learning to Examine Engineering Students Self-selection in Entrepreneurship Education Programs
利用机器学习检查工科学生在创业教育项目中的自我选择
基本信息
- 批准号:2321175
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by advancing the understanding of undergraduate engineering students' participation in entrepreneurship education programs. Entrepreneurship and innovation are important for economic success, and engineers often hold a central role in leading innovation in today's high-technology world. To compete successfully in the global technological innovation economy, graduating engineers need to possess entrepreneurial skills to identify opportunities and understand market and business needs. Entrepreneurship education programs continue to be recognized as a mechanism for developing entrepreneurial skills and innovativeness in engineering and other STEM graduates. With increasing evidence supporting the advantages of entrepreneurship programming, it is important to ensure that broader engineering student populations are exposed to entrepreneurship programming. However, students often self-select into entrepreneurship education programs, and there is a lack of research in this regard. The project examines engineering students' self-selection by investigating the research question: How do engineering students' demographic, socio-economic, and academic backgrounds predict their participation in engineering entrepreneurship programs? By building a research-based understanding of student participation in entrepreneurship education programs, this individual investigator development project serves the national interest by providing insights for outreach, recruitment, and programmatic efforts, to widen the impact of these programs in undergraduate engineering education. The project uses innovative quantitative methods to examine how engineering students' demographic and academic background interactively predict their enrollment (or non-enrollment) in entrepreneurship education programs.As the STEM education community continues to develop innovative educational interventions, it is critical to investigate which students are enrolling in such programs, particularly from a demographic standpoint. Drawing on social selection theory that highlights the importance of students' backgrounds, the goal of this project is to leverage regression and machine learning techniques as an exploratory, data-driven approach to examine engineering students' engagement in entrepreneurship education programs. Because background factors are likely to be associated with each other in complex ways, the focus of the project is to examine social selection using an interactionist view which examines the dynamic interplay of student demographic factors. The project contributes to advancing conceptual understanding by providing data-driven models explaining student participation that lay the foundation for future research in the emerging field of engineering entrepreneurship education. In addition, the project will study the effectiveness and suitability of regression-based methods and advanced machine learning modeling techniques (and their algorithmic variants), which can advance the use of similar approaches in engineering education research. This project is supported through a partnership with the Bill & Melinda Gates Foundation, Schmidt Futures, and the Walton Family Foundation. This project is also supported by NSF's EDU Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigators' capacity to carry out high-quality STEM education research in the core areas of STEM learning and learning environments, broadening participation in STEM fields, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过促进对本科工程专业学生参与创业教育计划的理解来服务于国家利益。企业家精神和创新对经济成功至关重要,而工程师在当今高科技世界的创新中往往发挥着核心作用。为了在全球技术创新经济中成功竞争,即将毕业的工程师需要具备创业技能,以识别机会并了解市场和业务需求。创业教育计划继续被认为是培养工程和其他STEM毕业生创业技能和创新能力的机制。随着越来越多的证据支持创业编程的优势,重要的是要确保更广泛的工程专业学生群体接触创业编程。然而,学生往往自我选择进入创业教育项目,并在这方面的研究缺乏。该项目通过调查研究问题来研究工程专业学生的自我选择:工程专业学生的人口统计学,社会经济和学术背景如何预测他们参与工程创业计划?通过建立一个基于研究的理解学生参与创业教育计划,这个个人研究者发展项目服务于国家利益,提供了深入的宣传,招聘和方案的努力,扩大这些计划在本科工程教育的影响。该项目使用创新的定量方法来研究工程专业学生的人口统计学和学术背景如何交互预测他们在创业教育项目中的入学(或未入学)。随着STEM教育社区不断开发创新的教育干预措施,调查哪些学生正在入学这类项目至关重要,特别是从人口统计学的角度。利用社会选择理论,强调学生背景的重要性,该项目的目标是利用回归和机器学习技术作为一种探索性的,数据驱动的方法来检查工程专业学生参与创业教育计划。由于背景因素可能以复杂的方式相互关联,因此该项目的重点是使用互动主义观点来研究社会选择,该观点研究了学生人口因素的动态相互作用。该项目通过提供解释学生参与的数据驱动模型,为工程创业教育这一新兴领域的未来研究奠定了基础,从而有助于推进概念理解。此外,该项目还将研究基于回归的方法和先进的机器学习建模技术(及其算法变体)的有效性和适用性,这可以促进类似方法在工程教育研究中的使用。这个项目是通过与比尔梅林达盖茨基金会,施密特期货,沃尔顿家族基金会的合作伙伴关系支持。该项目也得到了NSF的EDU核心研究STEM教育研究能力建设的支持(ECR:BCSER)计划,旨在培养研究人员在STEM学习和学习环境的核心领域开展高质量STEM教育研究的能力,扩大STEM领域的参与,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prateek Shekhar其他文献
Contextual Influences on the Adoption of Evidence-Based Instructional Practices by Electrical and Computer Engineering Faculty
电气和计算机工程学院采用循证教学实践的背景影响
- DOI:
10.1109/te.2023.3338479 - 发表时间:
2024 - 期刊:
- 影响因子:2.6
- 作者:
Amy L. Brooks;Prateek Shekhar;Jeffrey Knowles;Elliott Clement;Shane Brown, - 通讯作者:
Shane Brown,
The Variation of Nontraditional Teaching Methods Across 17 Undergraduate Engineering Classrooms
17个本科工科课堂非传统教学方法的变化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kevin Nguyen;R. DeMonbrun;M. Borrego;M. Prince;J. Husman;C. Finelli;Prateek Shekhar;C. Henderson;C. Waters - 通讯作者:
C. Waters
Negative Student Response to Active Learning in STEM Classrooms: A Systematic Review of Underlying Reasons
学生对 STEM 课堂主动学习的负面反应:对根本原因的系统回顾
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Prateek Shekhar;M. Borrego;Matt DeMonbrun;C. Finelli;Caroline Crockett;Kevin Nguyen - 通讯作者:
Kevin Nguyen
Unpacking High School Students’ Motivational Influences in Project-Based Learning
揭示高中生在项目式学习中的动机影响
- DOI:
10.1109/te.2023.3299173 - 发表时间:
2024 - 期刊:
- 影响因子:2.6
- 作者:
Prateek Shekhar;Heydi Dominguez;Pramod Abichandani;Craig Iaboni - 通讯作者:
Craig Iaboni
Choosing Self-Care and Preservation: Examining Black Women STEM Faculty’s Decision to Pursue Entrepreneurship and Entrepreneurship Education Programming
选择自我照顾和保护:审视黑人女性 STEM 教师追求创业精神和创业教育计划的决定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Meaghan I. Pearson;Prateek Shekhar;Jacqueline Handley;J. Mondisa - 通讯作者:
J. Mondisa
Prateek Shekhar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prateek Shekhar', 18)}}的其他基金
EAGER: Examining Women STEM Faculty's Participation in Entrepreneurship Programs
EAGER:审查女性 STEM 教师参与创业计划的情况
- 批准号:
2126978 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Facilitating Engineering Faculty's Adoption of Evidence-based Instructional Practices
合作研究:促进工程学院采用循证教学实践
- 批准号:
2111052 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
CSAMGuard: Leveraging Advanced Machine Learning to Protect Against CSAM Link Obfuscation
CSAMGuard:利用先进的机器学习来防止 CSAM 链接混淆
- 批准号:
10073540 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Optimizing Cancer Prediction in Ontario: Leveraging Electronic Medical Records and Machine Learning for Early Detection
优化安大略省的癌症预测:利用电子病历和机器学习进行早期检测
- 批准号:
494938 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Operating Grants
Leveraging Machine Learning to Explore the Effects of the Design2Data Course-based Undergraduate Research Experience
利用机器学习探索基于 Design2Data 课程的本科生研究经验的效果
- 批准号:
2315767 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MCA Pilot PUI: Leveraging machine learning to better understand biodiversity patterns measured through passive acoustic sampling
MCA Pilot PUI:利用机器学习更好地了解通过被动声学采样测量的生物多样性模式
- 批准号:
2322350 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
- 批准号:
10822625 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Pictura Bio: Machine learning enhanced universal point of care diagnosis platform for infectious diseases leveraging novel fluorescent labelling of enveloped pathogens - developing the Alpha Prototype.
Pictura Bio:机器学习增强了传染病的通用护理点诊断平台,利用包膜病原体的新型荧光标记 - 开发 Alpha 原型。
- 批准号:
10077183 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D