Improved Constraints on Mantle and Crustal Source Signals in CO2 well gases: New Insights from Ultra-high Precision Noble Gas and Clumped Isotope Measurements
改进对 CO2 井气体中地幔和地壳源信号的约束:超高精度稀有气体和聚集同位素测量的新见解
基本信息
- 批准号:2321494
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Volatile elements (like carbon, nitrogen, oxygen, water, and other gases) are critical for life on Earth. But there are still many open questions about how Earth formed, where volatile elements originated from, and how they move between the atmosphere, oceans, and Earth’s deep interior. By studying the gases that are released from inside Earth, we can learn more about the original sources of volatile elements. Different volatile origins will have different chemical signatures – akin to a fingerprint. Some of these chemical signatures may have been preserved deep within Earth's mantle for most of Earth’s history. In this research project, researchers will use new analytical techniques to study the composition of gases from Earth's mantle, focusing on samples from magmatic carbon dioxide (CO2) wells in Australia and the Colorado Plateau. This team also hopes to gain insight into how carbon dioxide can be stored underground, which could help us combat increasing levels of CO2 in the atmosphere and climate change. The natural movement of CO2 gas through Earth's subsurface can provide clues about how we can store CO2 effectively over long periods of time. In the Australian field site, magmatic CO2 gas is being re-injected into the ground to study whether long term geological storage is a viable tool to tackling rising atmospheric CO2 levels. This project will also provide opportunities for undergraduate students to gain experience in various aspects of scientific research such as fieldwork, laboratory work, modeling, and data analysis. Past measurements of noble gases in CO2 well gases in the Colorado Plateau provide important constraints on the cycling of volatiles within Earth’s mantle. Owing to their chemical and biological inertness, noble gases are exceptionally conservative tracers of sources and processes. New high-precision measurements of Ar, Kr, and Xe isotopes in CO2 well gas samples – made at 10 to 100 times higher precision than was previously attainable – will shed new light on the timing of volatile cycling and the cosmochemical origin of heavy noble gases in our atmosphere. Novel state-of-the-art measurements of clumped N2 and CH4 in these systems will provide unprecedented insight into the formation temperature and sources of volatiles, which will aid in understanding the recycling of deep nitrogen to the atmosphere and in disentangling biotic from abiotic methane production in hydrothermal systems. In cooperation with colleagues working on CO2 sequestration projects in Australia, measurements of noble gas isotopes made before, and after, test injection will be utilized as a novel tracer for subsurface transport of injected CO2, with possible implications for monitoring other sequestration sites worldwide. The new measurements made in this study will be shared with the broader community through a series of peer-reviewed publications, conference presentations, and will be made freely available to the public through online data repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
挥发性元素(如碳、氮、氧、水和其他气体)对地球上的生命至关重要。但是,关于地球是如何形成的,挥发性元素来自哪里,以及它们如何在大气层,海洋和地球内部深处移动,仍然存在许多悬而未决的问题。通过研究地球内部释放的气体,我们可以更多地了解挥发性元素的原始来源。不同的挥发性来源会有不同的化学特征-类似于指纹。其中一些化学特征可能在地球历史的大部分时间里都保存在地幔深处。在这个研究项目中,研究人员将使用新的分析技术来研究地球地幔气体的组成,重点是澳大利亚和科罗拉多高原岩浆二氧化碳(CO2)威尔斯的样本。该团队还希望深入了解二氧化碳如何储存在地下,这可以帮助我们应对大气中二氧化碳含量的增加和气候变化。二氧化碳气体在地球地下的自然运动可以为我们如何长期有效地储存二氧化碳提供线索。在澳大利亚的油田现场,岩浆二氧化碳气体被重新注入地下,以研究长期地质储存是否是解决大气二氧化碳水平上升的可行工具。该项目还将为本科生提供机会,以获得科学研究的各个方面的经验,如实地考察,实验室工作,建模和数据分析。过去对科罗拉多高原CO2井气中稀有气体的测量提供了对地幔内挥发物循环的重要限制。由于其化学和生物惰性,惰性气体是非常保守的来源和过程的示踪剂。新的高精度测量二氧化碳井气样品中的Ar,Kr和Ar同位素-比以前高出10到100倍的精度-将揭示挥发性循环的时间和我们大气中重惰性气体的宇宙化学起源。在这些系统中,对聚集的N2和CH 4的最新测量将提供对形成温度和挥发物来源的前所未有的了解,这将有助于了解深层氮向大气的再循环,并有助于解开热液系统中生物甲烷和非生物甲烷的生产。与澳大利亚从事二氧化碳封存项目的同事合作,在测试注入之前和之后进行的惰性气体同位素测量将被用作注入二氧化碳地下运输的新型示踪剂,可能对监测世界各地的其他封存地点产生影响。这项研究中的新测量结果将通过一系列同行评审的出版物、会议报告与更广泛的社区分享,并将通过在线数据库免费向公众提供。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Broadley其他文献
PPCPsの環境中での存在状況
环境中 PPCP 的存在
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
須藤克誉;鹿児島渉悟;高畑直人;佐野有司;澤木佑介;小宮剛;David Bekaert;Michael Broadley;Bernard Marty;中田典秀 - 通讯作者:
中田典秀
カナダ・ラブラドール地方の堆積岩の年代測定
约会加拿大拉布拉多的沉积岩
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
須藤克誉;鹿児島渉悟;高畑直人;佐野有司;澤木佑介;小宮剛;David Bekaert;Michael Broadley;Bernard Marty - 通讯作者:
Bernard Marty
Michael Broadley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Financial Constraints in China
and Their Policy Implications
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学 者研究基金项目
相似海外基金
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Constraints from multiple low frequency data on the long wavelength density structure in the deep mantle
多个低频数据对深部地幔长波长密度结构的约束
- 批准号:
2326226 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Constraints on the Earth's water budget by hydration and dehydration reactions in island arc mantle materials
岛弧地幔物质的水合和脱水反应对地球水收支的限制
- 批准号:
22H01332 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unpicking global mantle convection influences from the local: investigating asthenospheric versus lithospheric constraints on the evolution of
阐明全球地幔对流对局部地幔对流的影响:研究软流圈与岩石圈对地幔演化的限制
- 批准号:
2609877 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Studentship
Experimental constraints on the rheology of the mantle lithosphere at the base of the seismogenic zone
地震带底部地幔岩石圈流变学的实验约束
- 批准号:
2054522 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Mantle fluid contribution to springs along the Denali Fault System: Constraints on the crustal scale nature of the main strand and splays
EAGER:合作研究:地幔流体对德纳里断层系统沿线泉水的贡献:对主链和斜张地壳尺度性质的限制
- 批准号:
2016336 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Mantle fluid contribution to springs along the Denali Fault System: Constraints on the crustal scale nature of the main strand and splays
EAGER:合作研究:地幔流体对德纳里断层系统沿线泉水的贡献:对主链和斜张地壳尺度性质的限制
- 批准号:
2016338 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Thermal constraints on the role of hydrated oceanic mantle lithosphere in the genesis of intermediate-depth seismicity
水合大洋地幔岩石圈在中深度地震活动成因中作用的热约束
- 批准号:
2021027 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
The Fate of Earth's Plates: Sublithopsheric Diamond Constraints on Recycling in Earth’s Mantle Transition Zone
地球板块的命运:亚岩石层金刚石对地幔过渡带回收的限制
- 批准号:
2025779 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant