Modeling of strongly coupled magneto-mechanical behavior in magneto-sensitive elastomers

磁敏弹性体中强耦合磁机械行为的建模

基本信息

项目摘要

Field-controllable functional polymers represent a relatively new class of applied materials exhibiting a strong coupling of mechanical and external fields. The application of such fields influences the interactions between different local material phases and may cause an evolution of the microstructure. A prominent example are magneto-sensitive elastomers (MSEs) featuring mechanical moduli that become enhanced under an applied magnetic field as well as the ability for magnetically induced deformations and actuation stresses. This makes MSEs very attractive for a variety of technical implementations, especially for actoric applications such as artificial muscles, sensors, micro-robots and micro-pumps. Since the effective coupled magneto-mechanical behavior is of special interest in these applications, an in-depth understanding of the structure-property relations in MSEs as well as suitable theories for computing the effective macroscopic material response are required.MSEs represent a two-component system, in which micron-sized magnetizable particles are embedded in a soft polymer network. The flexibility of polymer sub-chains between cross-links allows a considerable degree of particle rearrangement under strong magnetic fields. As a result, the particles are prone to organize themselves into chain-like microstructures, which may considerably influence the coupled magneto-mechanical properties of MSEs. In this joint project, two work groups from the Leibniz-Institute for Polymer Research Dresden (IPF) and the Institute of Solid Mechanics of TU Dresden (IFKM) develop adapted modeling and simulation techniques to capture the hierarchical material structure, account for its evolution and predict the resulting macroscopic, strongly coupled magneto-mechanical behavior of MSEs. The theoretical predictions will be compared between both groups and with existing literature results. The modeling strategies which are pursued at IPF and IFKM will be combined to develop a unified, hybrid multiscale framework which allows for an accurate but efficient prediction of the macroscopic response of realistic MSE samples. The particular challenge is the simultaneous consideration of inhomogeneous, macroscopic magnetic and mechanical fields and their interaction with the underlying evolving microstructure. It is expected that the developement of the unified approach will benefit from the scientific exchange within the SPP that already started in the first funding period. The overall performance of the hybrid multiscale framework will be investigated by comparing simulation results for realistic MSE specimens with the experimentally observed behavior.
场可控功能聚合物代表了一类相对较新的应用材料,表现出机械和外场的强耦合。这些场的应用影响了材料不同局部相之间的相互作用,并可能导致微观结构的演变。一个突出的例子是磁敏弹性体(MSEs),其机械模量在外加磁场下增强,并且具有磁诱导变形和驱动应力的能力。这使得mse对于各种技术实现非常有吸引力,特别是对于人造肌肉,传感器,微型机器人和微型泵等动态应用。由于有效的磁-力学耦合行为在这些应用中是特别感兴趣的,因此需要深入了解mse中的结构-性能关系以及计算有效宏观材料响应的合适理论。mse是一种双组分系统,其中微米级的可磁化颗粒嵌入在软聚合物网络中。交联之间聚合物子链的柔韧性允许在强磁场下相当程度的粒子重排。因此,颗粒容易组织成链状微观结构,这可能会极大地影响mse的耦合磁-力学性能。在这个联合项目中,来自德累斯顿莱布尼茨聚合物研究所(IPF)和德累斯顿工业大学固体力学研究所(IFKM)的两个工作组开发了适应的建模和仿真技术,以捕获分层材料结构,解释其演变并预测由此产生的宏观,强耦合mse的磁-力学行为。理论预测将在两组之间进行比较,并与现有文献结果进行比较。IPF和IFKM所追求的建模策略将结合起来,开发一个统一的混合多尺度框架,该框架允许对现实MSE样本的宏观响应进行准确而有效的预测。特别的挑战是同时考虑不均匀的宏观磁场和力学场以及它们与底层不断变化的微观结构的相互作用。预计统一方法的制定将受益于SPP内部已经在第一个资助期开始的科学交流。混合多尺度框架的整体性能将通过比较真实MSE试件的模拟结果与实验观察到的行为来研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozentin Dr. Marina Grenzer其他文献

Privatdozentin Dr. Marina Grenzer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozentin Dr. Marina Grenzer', 18)}}的其他基金

Hydrodynamic reinforcement in filled polymer systems: numerical simulations and non-linear modeling
填充聚合物系统中的流体动力增强:数值模拟和非线性建模
  • 批准号:
    318736673
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamic mechanical behaviour of the magneto-sensitive elastomers in a homogeneous magnetic field
磁敏弹性体在均匀磁场中的动态机械行为
  • 批准号:
    244521084
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theory of photo-mechanical properties of azobenzene polymers: light-induced deformation dynamics
偶氮苯聚合物的光机械性能理论:光致变形动力学
  • 批准号:
    171353444
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling of azopolymer surface restructuring under complex irradiation patterns
复杂辐照模式下偶氮聚合物表面重构的建模
  • 批准号:
    526190489
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

共振价键理论及其在强关联电子体系中的应用
  • 批准号:
    11174364
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
铜(锰)氧化物强关联电子系统中的异常物理现象
  • 批准号:
    10374045
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States
强耦合等离子体激子态的超快相移
  • 批准号:
    2304905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
  • 批准号:
    2889918
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
New Method of Strongly-coupled QFTs towards Quantum Gravity, Nuclear, and Astrophysics
强耦合 QFT 应用于量子引力、核和天体物理学的新方法
  • 批准号:
    22KJ1777
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Control of the electron-lattice strongly-coupled system by ultrahigh magnetic fields
超高磁场对电子晶格强耦合系统的控制
  • 批准号:
    23H01117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators
与激子和介电谐振器强耦合的电驱动等离子体发光体
  • 批准号:
    2309941
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improvement of the meteorological model performance by using strongly coupled data assimilation of wind and aerosol
利用风和气溶胶强耦合数据同化改进气象模型性能
  • 批准号:
    23K13173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
  • 批准号:
    2890362
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Spiraling Into Control: Ultra High-Impedance Superconducting Resonators for Strongly-Coupled Spin-Cavity QED
螺旋进入控制:用于强耦合自旋腔 QED 的超高阻抗超导谐振器
  • 批准号:
    2210309
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Synthesis and Studies of Single-Molecule Magnets Incorporating Strongly Coupled Two-Coordinate Metal Building Units
强耦合二配位金属构建单元单分子磁体的合成与研究
  • 批准号:
    2138017
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Research on Vibration Design Method for Strongly Coupled Structures
强耦合结构振动设计方法研究
  • 批准号:
    22K03998
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了