SBIR Phase I: A Physics-Informed/Encoded Polymer Informatics Platform for Accelerated Development of Advanced Polymers and Formulations

SBIR 第一阶段:物理信息/编码聚合物信息学平台,用于加速先进聚合物和配方的开发

基本信息

  • 批准号:
    2322108
  • 负责人:
  • 金额:
    $ 27.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The broader/commercial impacts of this Small Business Innovation Research (SBIR) Phase I project are to transform the way in which polymeric materials are developed. Adopting the most advanced artificial intelligence (AI) techniques, the proposed technology seeks to dramatically accelerate the exploration of new polymer formulations, efficiently and accurately discovering those with targeted performances and applications, and ultimately minimizing the time and the cost needed to develop new and superior functional materials. This technology will enable the targeted development of polymers for specific applications such as packaging or energy storage, while ensuring full recyclability. New polymer designs of this type can help alleviate the current global problem of plastic waste. Given that polymers are one of the most important classes of materials in use today, the impact of this SBIR Phase I project is expected to be significant and far-reaching. This Small Business Innovation Research (SBIR) Phase I project aims at transforming the state-of-the-art AI-based technology currently used to discover and design functional polymers. Since the beginning of polymer informatics about a decade ago, this AI-based approach has quickly become a powerful tool to design new functional polymers. At the center of this technology are the machine-learning models, trained on past data and used to evaluate the polymeric materials yet to be synthesized. Currently, the models are developed by purely “learning” the available datasets independently, ignoring numerous physics-governed correlations across data of different polymer classes and properties that come from different sources. Without proper awareness, the models can easily violate the relevant physic rules and render unphysical results, especially when the training data are not sufficiently large. In this project, the company will develop two deep learning architectures in which known and important physics-governed correlations are secured. The architectures will be the most advanced deep learning tools to combat the small and sparse data problems that are very common in and important for polymer informatics. The new technology is expected to significantly transform the development and deployment of functional polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的更广泛/商业影响是改变了开发聚合物材料的方式。拟议的技术采用了最先进的人工智能(AI)技术,旨在极大地加速对新聚合物配方的探索,有效,准确地发现具有针对性的性能和应用的人,并最终将开发新功能和优质功能材料的时间和成本最小化。该技术将使聚合物的目标开发用于特定应用,例如包装或能源存储,同时确保完全可回收性。这种类型的新聚合物设计可以帮助减轻当前的塑料废物问题。鉴于聚合物是当今使用的最重要的材料类别之一,因此该SBIR I期项目的影响预计将是重要且深远的。这项小型企业创新研究(SBIR)I阶段项目旨在改变目前用于发现和设计功能聚合物的最先进的基于AI的技术。自十年前聚合物信息开始以来,这种基于AI的方法已迅速成为设计新功能聚合物的强大工具。该技术的中心是机器学习模型,该模型对过去的数据进行了培训,并用于评估尚未合成的聚合物材料。当前,模型是通过独立“学习”独立“学习”来开发的,忽略了来自不同来源的不同聚合物类和属性的数据中的众多物理治疗相关性。如果没有适当的意识,模型就可以轻松违反相关的物理规则并产生非物理结果,尤其是当训练数据不够大的时候。在该项目中,该公司将开发两个深度学习体系结构,其中确保已知和重要的物理治疗相关性。这些体系结构将是最先进的深度学习工具,以解决对聚合物信息非常常见且重要的稀疏数据问题。预计这项新技术将显着改变功能聚合物的开发和部署。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被视为通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huan Tran其他文献

Establishment of land cover map using object-oriented classification method for VNREDSat-1 data
采用面向对象分类方法对VNREDSat-1数据建立土地覆盖图
  • DOI:
    10.46326/jmes.2020.61(2).15
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Thi Pham;Son Thanh Nguyen;Nghia Viet Nguyen;H. Dao;Long Duc Doan;N. Vo;Trang Thi Quynh Nguyen;Huan Tran
  • 通讯作者:
    Huan Tran
Building bridges from research to therapy: a roadmap for the successful generation of clinical-grade iPSCs
  • DOI:
    10.1016/j.jcyt.2015.03.461
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Behnam Ahmadian Baghbaderani;Xinghui Tian;Amy Burkall;Neo Boon Hwa;Tracy Dimezzo;Huan Tran;Inbar Friedrich Ben Nun;Don Paul kovarcik;Thomas Fellner
  • 通讯作者:
    Thomas Fellner
Novel high voltage polymer insulators using computational and data-driven techniques
  • DOI:
    10.1063/5.0044306
  • 发表时间:
    2021-05-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Kamal, Deepak;Huan Tran;Ramprasad, Rampi
  • 通讯作者:
    Ramprasad, Rampi
Treatment of contact lens related dry eye with antibacterial honey.
用抗菌蜂蜜治疗隐形眼镜相关的干眼症。
CD4 + T Cell Counting Using Anti-CD4 Antibody Conjugated Magnetic
使用抗 CD4 抗体共轭磁进行 CD4 T 细胞计数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyễn Hoàng;Do Quang;Loc;Phi Thi Huong;L. M. Quynh;Pham Thi Thu;Hương;Nguyen Thi;Van Anh;Bui Thanh Tung;C. D. Trinh;N. H. Luong;Kei Nakayama;Ryo Ishikawa;Y. Ikuhara;Ho Won Jang;Jessiel Siaron Gueriba;Nur Ellina;Annisa Salehuddin;W. Diño;Kiminori Washika;H. Nakamura;Tatsumi Kawafuchi;Dahyun Kang;Yeeun Kim;Jungmok Yang;Ji;Moongyu Jang;M. Lang;Ch. Thurn;P. Eibisch;A. Ata;M. Winkler;P. Lunkenheimer;I. Kézsmárki;U. Tutsch;Y. Saito;S. Hartmann;J. Zimmermann;A. R. N. Hanna;A. T. M. N. Islam;S. Chillal;B. Lake;B. Wolf;Y. Mitsui;Keiichi Koyama;H. Yamamoto;Author1;I. Škorvánek;B. Kunca;J. Marcin;P. Švec;W. Pong;T. Amrillah;M. Duong;J. Juang;Sehwan Song;Jiwoong Kim;Chang;Jisung Lee;Dooyong Lee;Doukyun Kim;Hyegyoung Kim;Haeyong Kang;Chul;Jun Kue Park;Jae Hyuck Jang;Noboru Miyata;Neeraj Kumar;Yeong;Chanyoung Hwang;Brian J. Kirby;Sungkyun Park;Tomoyuki Yamamoto;Michal Piasecki;G. L. Myronchuk;Andrzej Suchocki;A. Popov;M. Brik;I. Barchiy;O. Khyzhun;Huu‐Quang Nguyen;M. Nguyen;Jaebeom Lee;Chanyong Hwang;H. Narita;R. Kawarazaki;Y. Miyasaka;Y. Ikeda;R. Hisatomi;A. Daido;Y. Shiota;T. Moriyama;Youichi Yanase;A. Ognev;A. Samardak;T. Ono;H. Hieu;Hai Hoang;P. Hanh;Tran Thi Hai;R. Horng;Apoorva Sood;F. Tarntair;D. Wuu;S. Jitendra;Pratap;T. N. A. Nguyen;Q. Pham;V. Chu;K. T. Do;T. H. Nguyen;H. Pham;M. Goto;M. Fukumoto;Hiroyuki Tomita;Tatsuki Watanabe;H. Kubota;A. Fukushima;Kei Yakushiji;Yoshishighe Suzuki;Toan Dang;Kazunori Sato;Genta Hayashi;Kazuma Ogushi;Shuichi Okabe;Katsuhiro Suzuki;T. Terai;H. Fujii;Masako Ogura;Huan Tran
  • 通讯作者:
    Huan Tran

Huan Tran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

应对多阶段信息物理协同攻击的综合能源系统主动安全防护
  • 批准号:
    52377115
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
热带气旋增强阶段影响尺度和强度关联性的物理因子和机理研究
  • 批准号:
    42175073
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
华南前汛期深对流云不同发展阶段云微物理垂直结构的气候特征及演变机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
大型钢铁企业能量流与制造流协同鲁棒优化方法研究
  • 批准号:
    61903293
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
碳纳米颗粒调控不同聚集阶段Aβ淀粉样蛋白聚集的物理机理研究
  • 批准号:
    11804174
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
  • 批准号:
    2336079
  • 财政年份:
    2024
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
SBIR Phase I: A physics-based machine learning platform for crystal structure prediction of small drug molecules
SBIR 第一阶段:基于物理的机器学习平台,用于小药物分子晶体结构预测
  • 批准号:
    2227936
  • 财政年份:
    2023
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
SBIR Phase II: Data Analytics and Physics-Based Insights into Vehicle Mobility Patterns
SBIR 第二阶段:基于数据分析和基于物理的车辆移动模式洞察
  • 批准号:
    2036018
  • 财政年份:
    2021
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: A Physics Guided Machine Learning Framework for Monitoring Rivers using Satellite Imagery
SBIR 第一阶段:使用卫星图像监测河流的物理引导机器学习框架
  • 批准号:
    2045444
  • 财政年份:
    2021
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了