SBIR Phase I: Trajectory Optimizations and Learned Foliage Manipulation to Accelerate Throughput in Automated Strawberry Harvesting
SBIR 第一阶段:轨迹优化和学习叶子操纵,以提高自动化草莓收获的吞吐量
基本信息
- 批准号:2322402
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is to make automated harvesting of strawberries more efficient and effective and hence, more financially viable for growers to adopt. Automated harvesters currently deployed in conventional strawberry farms cannot reliably handle peak-season conditions when strawberries are hidden below a thick plant canopy and where plants must be displaced to view and pick the fruit. This project will develop software to expand the set of conditions whereby automation can increase productivity. Strawberries, the second most popular fruit in the United States, have the highest cost per acre to harvest because of their high touch harvesting process. Automating the harvesting process reduces labor needs, with the potential to either decrease costs and / or increase the quality of the fruit. Further, the project is expected to create high-skill jobs for American workers. This project’s main technical objective is to improve the quality and coverage of the map representation of strawberries and plants which will increase the number of harvested strawberries and the rate at which they are picked. The scope of the Phase I activity is to implement two software capabilities and to test them in simulation, laboratory and field environments. The first capability is a trajectory optimization module for a camera mounted to a robot manipulator. This technology will be designed to maximize information gain and to reduce localization uncertainty for strawberries while respecting kinematic and collision constraints for the motion of the robot arm. Success is to be measured by the rate of information gain relative to a naïve precomputed scan. The second is a trained neural network which estimates the parameters that best define a manipulation task plan for displacing foliage to maximize strawberry visibility and access for subsequent picking. Training and inference will be done in an end-to-end fashion, allowing an estimate of the value of a given task plan from color and depth camera observations of the scene. This contrasts with a conventional pipeline which doesn’t make the most of the rich latent representations possible with neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的广播/商业影响是使草莓的自动收获更加高效,有效,因此对增长的采用更为可行。当草莓隐藏在厚植物的冠层下方,必须放置植物以查看和挑选水果时,目前部署在常规草莓农场中的自动收割机无法可靠地处理峰值季节。该项目将开发软件,以扩大一组条件,从而可以提高生产率。草莓是美国第二受欢迎的水果,由于其高触摸收获过程,每英亩的成本最高。自动化收获过程可减少劳动力需求,从而有可能降低成本和 /或提高水果的质量。此外,该项目有望为美国工人创造高技能工作。该项目的主要技术目的是提高草莓和植物地图表示的质量和覆盖范围,这将增加收获的草莓的数量以及采摘的速度。 I阶段活动的范围是实现两个软件功能,并在模拟,实验室和现场环境中测试它们。第一个功能是安装在机器人操纵器上的相机的轨迹优化模块。该技术将旨在最大程度地提高信息增益并减少草莓的定位不确定性,同时尊重机器人组运动的运动学和碰撞约束。成功将通过相对于幼稚的预定扫描的信息增益率来衡量。第二个是一个受过训练的神经元网络,该网络估算了最能定义操纵任务计划的参数,该计划可以取代叶子,以最大程度地提高草莓的可见性和随后的选择的访问。培训和推论将以端到端的方式进行,从而从颜色和深度摄像头观察中估算给定任务计划的价值。这与传统的管道形成鲜明对比,该管道与神经网络没有使大部分丰富的潜在表现成为可能。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Gutierrez其他文献
Adaptive Immune Receptor Recovery Distinctions in Burkitt's Lymphoma Correlate with Better Survival
- DOI:
10.1182/blood-2024-208996 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Taha Huda;Sara Khan;George Blanck;Boris I Chobrutskiy;Alexander Gutierrez - 通讯作者:
Alexander Gutierrez
Alexander Gutierrez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting Future Liver Remnant Function and Growth Trajectory Using Novel MR Imaging Biomarkers
使用新型 MR 成像生物标志物预测未来的肝脏残余功能和生长轨迹
- 批准号:
10749468 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Proteomic Profiling of Idiopathic Pulmonary Fibrosis Progression Trajectory
特发性肺纤维化进展轨迹的蛋白质组学分析
- 批准号:
10708256 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Tracking the evolutionary trajectory of neutralizing antibodies following BG505 SOSIP immunization
追踪 BG505 SOSIP 免疫后中和抗体的进化轨迹
- 批准号:
10620979 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Resubmission: Latent Class Trajectory Analysis in the OHTS Study
重新提交:OHTS 研究中的潜在类别轨迹分析
- 批准号:
10675764 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Beneficial or Fostering Future struggles (B.F.F.s)? Characterizing the Role of Friends in the Developmental Trajectory of Maltreated Adolescent
有益还是促进未来的斗争(B.F.F.s)?
- 批准号:
10686594 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别: