Algorithmic Design of Origami Mechanisms and Robots

折纸机构和机器人的算法设计

基本信息

  • 批准号:
    2322898
  • 负责人:
  • 金额:
    $ 47.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop algorithms for automated design of folded robots with custom geometry and motion requirements. Folding is a commonly used and scalable manufacturing process for making 3D objects from sheets of metal or plastic. Currently, designing folded mechanisms and robots is a complex process that requires even skilled engineers to go through multiple design iterations. At the same time, however, many of the constraints that engineers must deal with are geometric in nature and can be addressed algorithmically. New algorithms for end-to-end design that convert design specifications directly into 3D physically realizable robots would simplify the design process, lower barriers to robotics, and open opportunities for custom robotics on demand when rapid deployment is required, for example in emergency relief or in search and exploration of unknown environments. In order to develop these algorithms, the researchers will address fundamental questions in origami-inspired engineering, robotics, and computational geometry. Although the work will focus on origami-inspired fabrication, parts of the resulting system will also be applicable to other fabrication techniques, including 3D printing or more traditional machining. The research will provide formal insights into algorithmic design that enables fully automated end-to-end design pipelines, resulting in valid, functional, robotic components within hours or days. The specific objective of this project is to formalize the design of kinematic chains and trees that have required workspaces or achievable trajectories. The main insight underlying this project is that geometric design problems of this nature can be mapped directly onto path planning problems that have been explored by the computational geometry and robotics communities. In particular, the researchers take a modular approach, in which a robot is constructed as a combination of link and joint components from a database, and each component is associated with an equivalent path type. By casting the problem in this way, the problem of kinematic design can be partially abstracted from the specific fabrication details. The researchers will develop algorithms for converting kinematic joint specifications into equivalent paths and robot designs, as well as formal guarantees for when such a process is or is not possible. They will fold the resulting designs out of plastic sheet in order to ensure that they are physically realizable. The results will be disseminated through a combination of open-source software with an associated graphical user interface for ease of use, workshops at engineering conferences, and arts and educational workshops in and around Philadelphia. The research will have broad societal impacts by making the resulting design software accessible to a diverse population, including K-12 students, teachers, hobbyists, and other non-engineering users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是开发自动化设计的折叠机器人与自定义的几何形状和运动要求的算法。折叠是一种常用的可扩展的制造工艺,用于从金属或塑料片制作3D物体。目前,设计折叠机构和机器人是一个复杂的过程,即使是熟练的工程师也需要经历多次设计迭代。然而,与此同时,工程师必须处理的许多约束在本质上是几何的,可以通过算法来解决。端到端设计的新算法将设计规范直接转换为3D物理可实现的机器人,这将简化设计过程,降低机器人技术的障碍,并在需要快速部署时为定制机器人提供机会,例如在紧急救援或搜索和探索未知环境时。为了开发这些算法,研究人员将解决折纸启发的工程,机器人和计算几何中的基本问题。虽然这项工作将集中在折纸启发的制造上,但最终系统的部分也将适用于其他制造技术,包括3D打印或更传统的加工。该研究将为算法设计提供正式的见解,实现完全自动化的端到端设计管道,在数小时或数天内产生有效的功能性机器人组件。这个项目的具体目标是正式设计的运动链和树木,需要可实现的轨迹。这个项目的主要观点是,这种性质的几何设计问题可以直接映射到路径规划问题,已被探索的计算几何和机器人社区。特别是,研究人员采用模块化方法,其中机器人被构造为来自数据库的链接和关节组件的组合,并且每个组件与等效路径类型相关联。通过以这种方式铸造的问题,运动设计的问题可以部分地从具体的制造细节抽象出来。研究人员将开发将运动关节规格转换为等效路径和机器人设计的算法,以及正式保证这种过程何时可能或不可能。他们将用塑料片折叠出最终的设计,以确保它们在物理上是可实现的。研究结果将通过开源软件与相关图形用户界面相结合的方式传播,以便于使用,工程会议研讨会以及费城及其周边地区的艺术和教育研讨会。该研究将产生广泛的社会影响,使最终的设计软件可供不同人群使用,包括K-12学生,教师,业余爱好者和其他非工程用户。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Sung其他文献

Effect of progressive visual error amplification on human motor adaptation
渐进式视觉误差放大对人类运动适应的影响
Drug Partitioning and Release Characteristics of Tricyclic Antidepressant Drugs Using a Series of Related Hydrophilic-Hydrophobic Copolymers
  • DOI:
    10.1002/jps.2600790918
  • 发表时间:
    1990-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cynthia Sung;Jennifer E. Raeder;Edward W. Merrill
  • 通讯作者:
    Edward W. Merrill
A Clinical Algorithm for Breast Cancer Patients: Exploring Reconstructive Options after Radiation
乳腺癌患者的临床算法:探索放射后的重建选择
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Cynthia Sung;Roy P. Yu;A. Raghuram;Alex K. Wong
  • 通讯作者:
    Alex K. Wong
A distributed pharmacokinetic model of two-step imaging and treatment protocols: application to streptavidin-conjugated monoclonal antibodies and radiolabeled biotin.
两步成像和治疗方案的分布式药代动力学模型:应用于链霉亲和素缀合的单克隆抗体和放射性标记的生物素。
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    W. W. V. Osdol;Cynthia Sung;Robert L. Dedrick;John N. Weinstein
  • 通讯作者:
    John N. Weinstein
The Diagnostic Approach to Lymphedema: a Review of Current Modalities and Future Developments
淋巴水肿的诊断方法:当前模式和未来发展的回顾
  • DOI:
    10.1007/s12609-019-00341-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    A. Raghuram;Roy P. Yu;Cynthia Sung;Sherry Huang;Alex K. Wong
  • 通讯作者:
    Alex K. Wong

Cynthia Sung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Sung', 18)}}的其他基金

Collaborative Research: Leveraging Fluid-Structure Interactions for Efficient Control in Geophysical Flows
合作研究:利用流固相互作用有效控制地球物理流
  • 批准号:
    2121887
  • 财政年份:
    2021
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
CAREER: Computational Design for Robust Legged Robots
职业:强健腿机器人的计算设计
  • 批准号:
    1845339
  • 财政年份:
    2019
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Computer Aided Design and Simulation Software for Origami
SBIR 第一阶段:折纸计算机辅助设计和仿真软件
  • 批准号:
    2233133
  • 财政年份:
    2023
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
Origami based design of ingestible medical instrumentation
基于折纸的可摄入医疗器械设计
  • 批准号:
    2897991
  • 财政年份:
    2022
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Studentship
Design of mechanical properties of core structures based on science of origami
基于折纸科学的核心结构力学性能设计
  • 批准号:
    21K03755
  • 财政年份:
    2021
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Shape Annealing Approach to DNA Origami Design
DNA 折纸设计的形状退火方法
  • 批准号:
    2113301
  • 财政年份:
    2021
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
  • 批准号:
    2029643
  • 财政年份:
    2020
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
  • 批准号:
    2029157
  • 财政年份:
    2020
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
Development of novel platform to rationally design DNA origami
开发合理设计DNA折纸的新平台
  • 批准号:
    18K18144
  • 财政年份:
    2018
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on shape design methods to utilize origami technology for industry
折纸技术应用于工业的形状设计方法研究
  • 批准号:
    15K05754
  • 财政年份:
    2015
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust Design of Compliant DNA Origami Mechanisms
合规 DNA 折纸机制的稳健设计
  • 批准号:
    1536862
  • 财政年份:
    2015
  • 资助金额:
    $ 47.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了