Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures

合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换

基本信息

  • 批准号:
    2323031
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Solid-state thermionic energy conversion has been predicted to be more efficient than conventional thermoelectric energy conversion based on bulk Peltier and Seebeck effects, if the thermionic barriers can be properly engineered. However, there have been relatively few experimental studies on solid-state thermionic energy conversion, mainly because of the difficulty of fabricating interfaces with the appropriate energy barriers, characterizing thermal transport across these interfaces, and separating the bulk thermoelectric properties from the interfacial properties. The proposed 2D Layered heterostructures enable these difficulties to be overcome and can potentially create a paradigm shift in the design of thermoelectric power generators and coolers with high efficiency. The project will also encompass significant educational activities, including an undergraduate research program and an outreach workshop for high school science teachers.The goal of the study is to develop a fundamental understanding of thermionic transport and energy conversion in multiple-barrier heterostructures using 2D-layered materials. Since the thermionic barriers must be thin, each barrier can have only a small temperature difference across it. Hence, macroscopic cooling and power generation needs to be obtained using multistage devices. In the proposed work, heterostructures are synthesized by physical vapor deposition (PVD), which can be used to produce heterostructures with hundreds of periods quite easily. These structures would be nearly impossible to fabricate by mechanical exfoliation. Unlike molecular beam epitaxy (MBE), the material synthesis approach proposed here is liftoff-compatible, enabling reliable measurements of cross-plane transport phenomena (electrical, thermal, and thermoelectric) using a new approach developed in the PIs’ labs. This new cross-plane measurement approach together with the configurable nanoarchitecture (i.e., layer thicknesses and total thickness) will enable the bulk and interfacial (i.e., thermionic emission) contributions to the thermovoltage to be separated. A phenomenological model of the electron and phonon transport across these novel devices will be developed using a thermionic emission transport approach. The proposed heterostructure geometries open up new degrees of freedom in the cross-plane transport with independent control of electrons and phonons, which is essential for achieving efficient energy conversion devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
据预测,如果能适当地设计热离子势垒,固态热离子能量转换将比基于体Peltier和Seebeck效应的传统热电能量转换更有效。然而,关于固态热电子能量转换的实验研究相对较少,主要是因为难以制造具有适当能量势垒的界面,表征这些界面上的热输运,以及将体热电性质与界面性质分开。所提出的二维层状异质结构能够克服这些困难,并可能在高效率热电发电机和冷却器的设计中创造范式转变。该项目还将包括重要的教育活动,包括一个本科研究项目和一个面向高中科学教师的拓展讲习班。该研究的目标是对使用二维层状材料的多势垒异质结构中的热离子传输和能量转换有一个基本的了解。由于热离子势垒必须很薄,每个势垒之间只能有很小的温差。因此,需要使用多级装置来获得宏观冷却和发电。本研究采用物理气相沉积(PVD)方法合成异质结构,制备具有数百个周期的异质结构非常容易。这些结构几乎不可能通过机械剥离来制造。与分子束外延(MBE)不同,这里提出的材料合成方法是起飞兼容的,可以使用pi实验室开发的新方法可靠地测量跨平面传输现象(电、热、热电)。这种新的跨平面测量方法以及可配置的纳米结构(即层厚度和总厚度)将使体和界面(即热离子发射)对热电压的贡献得以分离。电子和声子在这些新型器件上传输的现象学模型将使用热离子发射传输方法进行开发。所提出的异质结构几何形状在电子和声子独立控制的跨平面传输中开辟了新的自由度,这对于实现高效的能量转换装置至关重要。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Cronin其他文献

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes
准金属超净悬浮碳纳米管中结构相变和大有效带隙的证据
  • DOI:
    10.1007/s12274-013-0351-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shun-Wen Chang;Rohan Dhall;Moh Amer;Kentaro Sato;Riichiro Saito;Stephen Cronin
  • 通讯作者:
    Stephen Cronin

Stephen Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Cronin', 18)}}的其他基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
  • 批准号:
    2112898
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
  • 批准号:
    2106480
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
  • 批准号:
    1954834
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
  • 批准号:
    2012845
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
  • 批准号:
    1905357
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
  • 批准号:
    1708581
  • 财政年份:
    2017
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
  • 批准号:
    1512505
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Fifteenth International Conference on the Science and Application of Nanotubes
第十五届国际纳米管科学与应用会议
  • 批准号:
    1430099
  • 财政年份:
    2014
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
  • 批准号:
    2307613
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
  • 批准号:
    2307612
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327971
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了