Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge

使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射

基本信息

  • 批准号:
    2204667
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Single photon emission (SPE) is important for quantum communication and quantum information processing. While SPE from diamond has been studied extensively over the past 20 years, most of these studies have been all-optical (using external pulsed lasers), and there have been relatively few on their electro-optic or optoelectronic effects (excluding microwave excitation). In order to utilize these quantum emitters in real systems for quantum communication and quantum information processes, some form of electron-based modulation will likely be needed. This project uses high voltage nanosecond pulses (5kV and 50 nsec) to control the charge state of these defects, which opens up new parameters in the design of practical quantum communication systems. For example, the ability to modulate the emission wavelength of a single quantum emitter can provide an important capability in the optical read-out of these quantum emitters and for encoding quantum information. Also, there are several key difficulties in producing efficient electrically-driven light emission from diamond, which have greatly limited their potential use in practical applications. These challenges include difficulty injecting charge carriers due to the large Schottky barrier associated with these wide bandgap semiconductors. This project explores several strategies for overcoming these challenges. Once these challenges have been overcome, diamond pn-junctions may provide a good platform for producing electrically-driven single photons.This project will explore novel mechanisms of light emission from diamond using high voltage nanosecond pulses (5kV and 50 nsec). This approach can selectively produce emission from the negatively charged state of silicon-vacancy defects in diamond (i.e., SiV–), which exhibits narrow (FWHM = 4 nm at room temperature) emission at 738 nm, as distinct from the charge neutral state (i.e., SiV0) which emits around 946 nm. This project explores lower defect densities (i.e., single defect emission) than were previously studied, measuring charge-spin coupling (via ODMR), lifetimes and dynamics, and time-correlated single photon counting (TCSPC) measurements. The project will also explore electroluminescence from diamond pn-junctions, coupling to photonic crystal cavities and waveguides, and scaling these devices down to smaller sizes that operate at lower voltages. High voltage nanosecond pulse discharges enable extremely high peak fields to be achieved with negligible heating, providing an additional degree of freedom in the manipulation of this well-studied quantum emitter. While manipulation of spin states can be attained easily through magnetic resonance excitation (i.e., electron spin resonance and ODMR), charge state manipulation is not well-established, and techniques for manipulating this important quantum number are lacking. By mapping the luminescence of these devices systematically over a wide range of diamond substrates and voltage pulse parameters, a fundamental understanding of both classical and quantum light emission can be developed, in order to answer several open questions regarding this voltage-induced modulation of the charge state and the emission of Si-vacancy defects in diamond. The project will provide quantum information science education at various grade levels from elementary school to high school students. In addition, a module devoted to nanoscale classical and quantum optoelectronics will be developed for a new nanoscience course, and the research accomplishments under this grant will be discussed in class and integrated into the curriculum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单光子发射(SPE)在量子通信和量子信息处理中具有重要意义。虽然在过去的20年里,人们对金刚石的SPE进行了广泛的研究,但大多数研究都是全光学的(使用外部脉冲激光器),而对其电光或光电效应(不包括微波激发)的研究相对较少。为了在用于量子通信和量子信息处理的真实的系统中利用这些量子发射器,可能需要某种形式的基于电子的调制。该项目使用高压纳秒脉冲(5 kV和50 nsec)来控制这些缺陷的电荷状态,这为实际量子通信系统的设计开辟了新的参数。例如,调制单个量子发射器的发射波长的能力可以在这些量子发射器的光学读出中提供重要的能力并且用于编码量子信息。此外,在从金刚石产生有效的电驱动光发射方面存在几个关键困难,这极大地限制了它们在实际应用中的潜在用途。这些挑战包括由于与这些宽带隙半导体相关联的大肖特基势垒而难以注入电荷载流子。本项目探讨了克服这些挑战的几种策略。一旦这些挑战被克服,金刚石pn结可能会提供一个很好的平台来产生电驱动的单光子。本项目将探索金刚石使用高压纳秒脉冲(5 kV和50 nsec)发光的新机制。这种方法可以选择性地从金刚石中的硅空位缺陷的负电荷状态(即,SiV-),其在738 nm处表现出窄(在室温下FWHM = 4 nm)发射,与电荷中性状态(即,SiV 0),其发射约946 nm。该项目探索更低的缺陷密度(即,单缺陷发射),测量电荷-自旋耦合(通过ODMR),寿命和动力学,以及时间相关单光子计数(TCSPC)测量。该项目还将探索金刚石pn结的电致发光,耦合到光子晶体腔和波导,并将这些器件缩小到在较低电压下工作的较小尺寸。高电压纳秒脉冲放电能够实现极高的高峰领域,可以忽略不计的加热,提供了一个额外的自由度,在操纵这个良好的研究量子发射器。虽然可以通过磁共振激发容易地获得自旋状态的操纵(即,电子自旋共振和ODMR),电荷态操纵还没有很好地建立,并且缺乏用于操纵该重要量子数的技术。通过映射这些设备的发光系统在广泛的金刚石衬底和电压脉冲参数,经典和量子发光的基本理解,可以开发,为了回答几个悬而未决的问题,这种电压诱导的调制的电荷状态和发射的硅空位缺陷的金刚石。该项目将在从小学到高中的各个年级提供量子信息科学教育。此外,一个专门用于纳米经典和量子光电子学的模块将被开发为一个新的纳米科学课程,在此资助下的研究成果将在课堂上讨论,并纳入课程。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Cronin其他文献

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes
准金属超净悬浮碳纳米管中结构相变和大有效带隙的证据
  • DOI:
    10.1007/s12274-013-0351-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shun-Wen Chang;Rohan Dhall;Moh Amer;Kentaro Sato;Riichiro Saito;Stephen Cronin
  • 通讯作者:
    Stephen Cronin

Stephen Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Cronin', 18)}}的其他基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures
合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换
  • 批准号:
    2323031
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
  • 批准号:
    2112898
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
  • 批准号:
    2106480
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
  • 批准号:
    1954834
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
  • 批准号:
    2012845
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
  • 批准号:
    1905357
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
  • 批准号:
    1708581
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
  • 批准号:
    1512505
  • 财政年份:
    2015
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Fifteenth International Conference on the Science and Application of Nanotubes
第十五届国际纳米管科学与应用会议
  • 批准号:
    1430099
  • 财政年份:
    2014
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Enhancing the State of Health and Performance of Electronics via in-situ Monitoring and Prediction (SHaPE-MaP) - Toward Edge Intelligence in Power Conversion
职业:通过原位监控和预测 (SHAPE-MaP) 提高电子设备的健康状况和性能 - 迈向功率转换领域的边缘智能
  • 批准号:
    2239966
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Creation of innovative quantum repeater technology for semiconductor spin qubits based on photon-spin quantum state conversion
创建基于光子自旋量子态转换的半导体自旋量子位创新量子中继器技术
  • 批准号:
    23H05458
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Demonstration of quantum state conversion between photon polarization and electron spin states by manipulation of a single photo-excited electron spin
通过操纵单个光激发电子自旋来演示光子偏振和电子自旋态之间的量子态转换
  • 批准号:
    22KJ2076
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fabrication of a highly selective photocatalyst for methane conversion by controlling photocatalyst surface structures combined with quasi-steady state operando spectroscopy
通过控制光催化剂表面结构结合准稳态操作光谱制备用于甲烷转化的高选择性光催化剂
  • 批准号:
    22KJ3098
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Applications of Photofunctional Atomic Layer Materials Synthesized by Solid-State Reactions for Light Energy Conversion Systems
固态反应合成的光功能原子层材料在光能转换系统中的应用
  • 批准号:
    23H01808
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of thermofluidic energy harvesting elements to surpass the solid-state thermoelectric energy conversion
创建热流体能量收集元件以超越固态热电能量转换
  • 批准号:
    21K18693
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAS: Assessing the Applicability of Marcus Theory to Excited-state Proton Transfer and Protonic Photochemical Energy Conversion
CAS:评估马库斯理论在激发态质子转移和质子光化学能量转换中的适用性
  • 批准号:
    2102665
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Solid State Chemistry for Next Generation Energy Storage and Conversion Technologies
用于下一代能量存储和转换技术的固态化学
  • 批准号:
    RGPIN-2016-03853
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Solid State Chemistry for Next Generation Energy Storage and Conversion Technologies
用于下一代能量存储和转换技术的固态化学
  • 批准号:
    RGPIN-2016-03853
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Retrospective conversion of archival finding aids for the Hamburg State Archive’s collection “Senat”
汉堡国家档案馆收藏“Senat”的档案查找辅助工具的回顾性转换
  • 批准号:
    396624126
  • 财政年份:
    2018
  • 资助金额:
    $ 46万
  • 项目类别:
    Cataloguing and Digitisation (Scientific Library Services and Information Systems)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了