Collaborative Research: Neural computational rules of robust and generalizable learning

协作研究:鲁棒性和泛化学习的神经计算规则

基本信息

  • 批准号:
    2323241
  • 负责人:
  • 金额:
    $ 39.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Living organisms can learn from a few examples and apply that knowledge to new situations. For instance, humans can learn about trees from a few instances and recognize trees of different shapes and sizes, as well as can identify trees during different seasons, times of day, and scenes. This ability to learn fast and generalize to broader situations is unique to biological systems. In contrast, current artificial intelligence models can only attain close to human-level performance if they are trained on all possible scenarios they would encounter in each use case. This level of training is impractical, inefficient, and unrealistic. This project aims to learn directly from biological brains to identify new learning rules and apply them to artificial intelligence. The investigators train live insects, record neuronal signals from their brains, and employ computational models to identify key learning rules for fast, reliable and efficient learning. These biological principles inform the development of novel powerful algorithms for AI systems that can learn quickly, transfer knowledge to new tasks, and be robust and efficient. AI is essential in modern society, from healthcare to national security. This project leads to fundamental basic science discoveries as well as significant societal impacts. Additionally, the researchers establish summer workshops for high school, undergraduate, and graduate students, providing hands-on research experience. Both investigators are committed to training underrepresented minority students through this project.Associative learning is a crucial adaptive mechanism that influences behavioral outcomes in human and animal life. Biological systems exhibit the ability to generalize learned stimuli to diverse contexts, even from a small number of examples. However, the fundamental neural computations underlying fast, robust, and generalizable learning in biological systems are not fully understood. There exists a knowledge gap regarding the contribution of upstream neural circuits to system-level learning and the extension of biophysical learning rules for the development of new artificial intelligence (AI) algorithms. The invertebrate olfactory system shares organizational and functional similarities with the human olfactory system, making it an ideal model for investigating generalizable associative learning rules. In this study, the investigators uncover the neural computational rules governing generalizable associative learning in the central circuitry of the locust olfactory pathway and their connection to behavioral outcomes. Specific objectives are as follows: (a) Determine changes in neural responses and neural correlates of generalizable learning in the locust antennal lobe induced by associative learning; (b) Identify potential learning rules for generalization using a novel computational machine learning approach; (c) Validate the derived learning rules from the computer model through behavioral experiments. Findings from these objectives enhance understanding of the fundamental principles underlying generalizable associative learning and identify canonical AI algorithms for robust and generalizable learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物体可以从一些例子中学习,并将这些知识应用于新的情况。例如,人类可以从一些实例中了解树木,并识别不同形状和大小的树木,以及可以在不同季节,一天中的时间和场景中识别树木。这种快速学习和概括更广泛情况的能力是生物系统所独有的。相比之下,当前的人工智能模型只有在每个用例中遇到的所有可能场景下进行训练,才能获得接近人类水平的性能。这种水平的培训是不切实际、效率低下和不现实的。该项目旨在直接从生物大脑中学习,以识别新的学习规则并将其应用于人工智能。研究人员训练活昆虫,记录它们大脑的神经元信号,并采用计算模型来识别关键的学习规则,以实现快速、可靠和有效的学习。这些生物学原理为人工智能系统开发新的强大算法提供了信息,这些算法可以快速学习,将知识转移到新任务中,并且强大而高效。人工智能在现代社会中至关重要,从医疗保健到国家安全。该项目导致了基础科学发现以及重大的社会影响。此外,研究人员为高中,本科和研究生建立夏季研讨会,提供实践研究经验。两名研究人员都致力于通过这个项目培训代表性不足的少数民族学生。联想学习是一种重要的适应机制,影响人类和动物生活中的行为结果。生物系统表现出将学习到的刺激推广到不同背景的能力,即使是从少量的例子中。然而,生物系统中快速、鲁棒和可推广的学习背后的基本神经计算尚未完全理解。关于上游神经回路对系统级学习的贡献以及生物物理学习规则的扩展以开发新的人工智能(AI)算法,存在着知识差距。无脊椎动物的嗅觉系统与人类的嗅觉系统在组织和功能上有相似之处,这使其成为研究可推广的联想学习规则的理想模型。在这项研究中,研究人员揭示了蝗虫嗅觉通路中央回路中控制可推广联想学习的神经计算规则及其与行为结果的联系。具体目标如下:(a)确定由联想学习引起的蝗虫触角叶中可泛化学习的神经反应和神经相关物的变化;(B)使用新的计算机器学习方法识别用于泛化的潜在学习规则;(c)通过行为实验从计算机模型中推导出学习规则。这些目标的发现增强了对可推广联想学习基本原理的理解,并确定了用于强大和可推广学习的规范AI算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maksim Bazhenov其他文献

Maksim Bazhenov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maksim Bazhenov', 18)}}的其他基金

EFRI BRAID: Principles of sleep-dependent memory consolidation for adaptive and continual learning in artificial intelligence
EFRI BRAID:人工智能自适应和持续学习的睡眠依赖性记忆巩固原理
  • 批准号:
    2223839
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: US-German Collaboration: Influencing Brain Rhythms for Boosting Memory Consolidation
CRCNS 研究提案:美德合作:影响脑节律以促进记忆巩固
  • 批准号:
    1724405
  • 财政年份:
    2017
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了