Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
基本信息
- 批准号:2324643
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the great promises of modeling & simulation is that the models can serve as a basis for optimal decision making for complex physical systems. In many cases, the models for these systems are not fully known, and as a result contain uncertain parameters. This gives rise to problems in optimization under uncertainty (OUU). In the common situation in which the models take the form of partial differential equations (PDEs), for example characterizing fluid flow, solid mechanics, heat transfer, acoustics, and electromagnetics, the problems are known as PDE-constrained optimization under uncertainty (PDE-OUU). The recent development of so-called neural operators (NOs) promises to overcome the intractability of PDE-OUU problems by replacing the PDE model with a rapid-to-evaluate machine-learned surrogate. This project is developing a new integrated framework for both construction and training of NOs so that they better capture the mathematical structure of parameter and decision space and their impact on model outputs that drive decision making under uncertainty. These NOs will enable scalable, efficient, and accurate solution of PDE-OUU problems across a broad range of model-predictive decision-making under uncertainty problems of great societal or technological importance. Examples of such problems include those in climate change and natural hazard mitigation, design of new materials, operation of critical infrastructure, patient-specific disease treatment planning, and environmental observing system design. To facilitate the adoption of these algorithms, all software developed in this project will be released in open source form, building on existing successful libraries such as hIPPYlib. Two PhD students are being trained at the interdisciplinary interfaces of scientific machine learning, stochastic optimization, and PDE-constrained optimization. Despite their great importance in many technological, scientific, engineering, and medical fields, PDE-OUU problems are typically intractable when the uncertain parameter or decision variable dimensions are large, or when the models are large-scale and complex. However, many current methods for constructing NOs, as well as stochastic optimization methods to train them, do not exploit mathematical properties of the underlying models and as such are not sufficiently accurate to serve as proxies for the PDEs in OUU, particularly when the training data are limited due to the expense of obtaining them. To exploit mathematical properties of the PDE-governed maps from joint uncertain parameter and decision variable input space to model outputs that inform the optimization objective, this project seeks to extract knowledge of the geometry, smoothness, and intrinsic low dimensionality of the maps to synergistically co-design (1) training loss formulations, (2) neural architectures, and (3) stochastic optimization algorithms for training. The resulting NOs will exhibit greater accuracy with fewer PDE solves needed for training data, with accuracy measured over joint parameter–decision space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模仿真的最大承诺之一是,模型可以作为复杂物理系统的最佳决策的基础。在许多情况下,这些系统的模型并不完全已知,因此包含不确定的参数。这就产生了不确定性下的优化问题(OUU)。在通常情况下,模型采用偏微分方程(PDE)的形式,例如表征流体流动,固体力学,传热,声学和电磁学,这些问题被称为不确定性下的PDE约束优化(PDE-OUU)。最近发展的所谓的神经运营商(NOs)承诺克服棘手的PDE-OUU问题,取代PDE模型与快速评估机器学习的代理。 该项目正在开发一个新的综合框架,用于构建和培训NO,以便它们更好地捕捉参数和决策空间的数学结构及其对模型输出的影响,这些输出驱动不确定性下的决策。这些NO将在具有重大社会或技术重要性的不确定性问题下,在广泛的模型预测决策中实现PDE-OUU问题的可扩展,高效和准确的解决方案。这类问题的例子包括气候变化和自然灾害缓解、新材料的设计、关键基础设施的运作、针对具体病人的疾病治疗规划和环境观测系统设计。为了促进这些算法的采用,该项目中开发的所有软件都将以开源形式发布,建立在现有的成功库(如hIPPYlib)上。两名博士生正在接受科学机器学习,随机优化和PDE约束优化的跨学科接口的培训。尽管它们在许多技术、科学、工程和医学领域中非常重要,但当不确定参数或决策变量维数很大,或者模型规模很大且复杂时,PDE-OUU问题通常是棘手的。 然而,许多当前用于构建NO的方法以及用于训练它们的随机优化方法没有利用底层模型的数学性质,因此不足以准确地用作OIU中PDE的代理,特别是当训练数据由于获得它们的费用而受到限制时。为了从联合不确定参数和决策变量输入空间中利用PDE控制的映射的数学特性来建模优化目标的输出,该项目试图提取映射的几何形状,平滑度和内在低维的知识,以协同设计(1)训练损失公式,(2)神经架构和(3)用于训练的随机优化算法。由此产生的NOs将表现出更高的准确性,训练数据所需的PDE解决方案更少,在联合参数决策空间上测量的准确性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijaya Raghaven Bollapragada其他文献
Vijaya Raghaven Bollapragada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
脑启发的大规模脉冲神经网络算法与硬件设计
- 批准号:D25F020001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于先进封装的神经网络加速器芯粒设计仿真协同优化技术
- 批准号:ZYQ25F020007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高仿生神经元和突触设计方法及其动力学特性研究
- 批准号:2025JJ50345
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
上肢辅助双机械臂智能协调控制器设计及ADL训练对卒中患者脑神经活动影响的研究
- 批准号:2025JJ90295
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于图神经网络的二氧化碳还原铜基合金催化剂的可解释设计
- 批准号:JCZRQN202500068
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
内存高效脉冲神经网络的软硬协同设计
优化研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
针对未来时变问题的新型离散鲁棒神经
网络算法设计与研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
端侧高性能人工智能芯片技术研发
- 批准号:2025QK3005
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经血管单元调控的超结构设计与创伤
性脑损伤治疗研究
- 批准号:Q24C100008
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向感存算的 MTJ 脉冲神经形态器件机理与设计研究
- 批准号:2024JJ6477
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Crop design simulator utilizing deep neural networks with crop growth model as knowledge layer
利用深度神经网络以作物生长模型作为知识层的作物设计模拟器
- 批准号:
23H02200 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
- 批准号:
2321404 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Inverse design of metasurfaces using deep learning neural networks
使用深度学习神经网络进行超表面逆向设计
- 批准号:
2888733 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Studentship
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
A Tailored Deep Neural Network Design for the Identification of Breast Cancer in Mammography and Breast Histology
用于乳房 X 线摄影和乳腺组织学中乳腺癌识别的定制深度神经网络设计
- 批准号:
575865-2022 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of 3D-Conformational Descriptors of Organic Fragments for Design of Molecular Structures using Deep Neural Network
使用深度神经网络开发用于分子结构设计的有机片段 3D 构象描述符
- 批准号:
22K05073 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)